1
|
Sharma S, Khatri N, Puri S, Adhikari M, Wagle P, McIlroy DN, Kalkan AK, Vasquez Y. Iron Phosphide Nanobundles for Efficient Electrochemical Hydrogen Evolution Reaction in Acidic and Basic Media. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61858-61867. [PMID: 39471320 PMCID: PMC11565577 DOI: 10.1021/acsami.4c09660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/05/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Earth-abundant transition metal phosphide (TMP) nanomaterials have gained significant attention as potential replacements for Pt-based electrocatalysts in green energy applications, such as the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting. In particular, FeP nanostructures exhibit superior electrical conductivity and high stability. Moreover, their diverse composition and unique crystal structures position FeP nanomaterials as emerging candidates for HER electrocatalysts. However, the synthesis or fabrication method employed for FeP nanostructures can significantly affect their overall electrocatalytic properties. For example, the solution synthesis of pure-phase FeP nanostructures remains challenging due to the formation of multiple binary phases and undesirable agglomeration. In this work, we use a simple approach to synthesizing FeP nanobundles by reacting β-FeOOH (iron oxyhydroxide) with trioctylphosphine (TOP). FeP nanobundles were evaluated as HER electrocatalysts in both acidic and basic conditions, demonstrating good HER activity with overpotential values of 170 and 338 mV at a current density of -10 mA cm-2 in acidic and alkaline solutions, respectively. Additionally, they exhibited low values of Tafel slopes in both acidic and alkaline environments. In acidic media with a pH of 0.45, the nanobundles showed no signs of deterioration for up to 15 h (-50 mA cm-2). In basic media with a pH of 13.69, the nanobundles remain stable for up to 8 h (-50 mA cm-2). These results demonstrate a simple and effective method for producing highly efficient earth-abundant and cost-effective TMP-based electrocatalysts, which could play a vital role in the hydrogen economy of the future.
Collapse
Affiliation(s)
- Shubham Sharma
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United
States
| | - Nishan Khatri
- Department
of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Sharad Puri
- Department
of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United
States
| | - Menuka Adhikari
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United
States
| | - Phadindra Wagle
- Department
of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United
States
| | - David N. McIlroy
- Department
of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United
States
| | - A. Kaan Kalkan
- Department
of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Yolanda Vasquez
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United
States
| |
Collapse
|
2
|
Zha D, Wang R, Tian S, Jiang ZJ, Xu Z, Qin C, Tian X, Jiang Z. Defect Engineering and Carbon Supporting to Achieve Ni-Doped CoP 3 with High Catalytic Activities for Overall Water Splitting. NANO-MICRO LETTERS 2024; 16:250. [PMID: 39023812 PMCID: PMC11258119 DOI: 10.1007/s40820-024-01471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
This work reports the use of defect engineering and carbon supporting to achieve metal-doped phosphides with high activities and stabilities for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline media. Specifically, the nitrogen-doped carbon nanofiber-supported Ni-doped CoP3 with rich P defects (Pv·) on the carbon cloth (p-NiCoP/NCFs@CC) is synthesized through a plasma-assisted phosphorization method. The p-NiCoP/NCFs@CC is an efficient and stable catalyst for the HER and the OER. It only needs overpotentials of 107 and 306 mV to drive 100 mA cm-2 for the HER and the OER, respectively. Its catalytic activities are higher than those of other catalysts reported recently. The high activities of the p-NiCoP/NCFs@CC mainly arise from its peculiar structural features. The density functional theory calculation indicates that the Pv· richness, the Ni doping, and the carbon supporting can optimize the adsorption of the H atoms at the catalyst surface and promote the strong electronic couplings between the carbon nanofiber-supported p-NiCoP with the surface oxide layer formed during the OER process. This gives the p-NiCoP/NCFs@CC with the high activities for the HER and the OER. When used in alkaline water electrolyzers, the p-NiCoP/NCFs@CC shows the superior activity and excellent stability for overall water splitting.
Collapse
Affiliation(s)
- Daowei Zha
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Department of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, People's Republic of China
| | - Ruoxing Wang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Department of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, People's Republic of China
| | - Shijun Tian
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Zejun Xu
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Chu Qin
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xiaoning Tian
- Department of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, People's Republic of China.
| | - Zhongqing Jiang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
3
|
Zeng M, Fang W, Cen Y, Zhang X, Hu Y, Xia BY. Reaction Environment Regulation for Electrocatalytic CO 2 Reduction in Acids. Angew Chem Int Ed Engl 2024; 63:e202404574. [PMID: 38638104 DOI: 10.1002/anie.202404574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) is a sustainable route for converting CO2 into value-added fuels and feedstocks, advancing a carbon-neutral economy. The electrolyte critically influences CO2 utilization, reaction rate and product selectivity. While typically conducted in neutral/alkaline aqueous electrolytes, the CO2RR faces challenges due to (bi)carbonate formation and its crossover to the anolyte, reducing efficiency and stability. Acidic media offer promise by suppressing these processes, but the low Faradaic efficiency, especially for multicarbon (C2+) products, and poor electrocatalyst stability persist. The effective regulation of the reaction environment at the cathode is essential to favor the CO2RR over the competitive hydrogen evolution reaction (HER) and improve long-term stability. This review examines progress in the acidic CO2RR, focusing on reaction environment regulation strategies such as electrocatalyst design, electrode modification and electrolyte engineering to promote the CO2RR. Insights into the reaction mechanisms via in situ/operando techniques and theoretical calculations are discussed, along with critical challenges and future directions in acidic CO2RR technology, offering guidance for developing practical systems for the carbon-neutral community.
Collapse
Affiliation(s)
- Min Zeng
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Wensheng Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Yiren Cen
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Xinyi Zhang
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Yongming Hu
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| |
Collapse
|
4
|
Abiola Raheem S, Shen H, Saad A, Guo H, Thomas T, Yang M. Mo3N2/VO2 composite as electrocatalysts for hydrogen evolution reaction. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Sahu N, Das JK, Behera JN. Metal-organic framework (MOF)-derived plate-shaped CoS 1.097 nanoparticles for an improved hydrogen evolution reaction. Dalton Trans 2022; 51:10272-10278. [PMID: 35748602 DOI: 10.1039/d2dt01630c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic framework (MOF)-derived transition metal sulfides are viewed as reliable, cost-effective, and alternative hydrogen evolution reaction (HER)-efficient electrocatalysts. They have been used to replace platinum (and their alloys) for production of renewable energy carriers such as hydrogen. Progress towards development of non-precious transition-metal sulfides through different synthetic routes to obtain unique morphological nanostructures with enhanced HER activity is challenging. We introduced a transition-metal sulfide, cobalt sulfide (CoS1.097), derived from a cobalt MOF [Co-BPY-DDE] by following facile, one-step solvothermal sulfurization. By varying the sulfurization temperature (from 140 °C to 180 °C) during the solvothermal method, three cobalt-sulfide products were obtained: CoS1.097-140, CoS1.097-160, and CoS1.097-180, respectively. Temperature variation had a vital role in optimizing the HER activity of the electrocatalyst. Besides, notable plate-shaped cobalt sulfide nanoparticles (CoS1.097-160) required overpotential of 163 mV to deliver a current density of 10 mA cm-2 with a low Tafel slope of 53 mV dec-1, thereby demonstrating faster reaction kinetics during the evolution of molecular hydrogen. Furthermore, 25 h of long-term stability of the electrocatalyst reflected its practical applicability in acidic media. CoS1.097-160 had uniform plate-shaped morphology and large electrochemical active surface area, which contributed to enhanced electrochemical performance through water electrolysis.
Collapse
Affiliation(s)
- Nachiketa Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurdha, 752050, Odisha, India. .,Centre for Interdisciplinary Sciences (CIS), NISER, 752050, Jatni, Odisha, India
| | - Jiban K Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurdha, 752050, Odisha, India. .,Centre for Interdisciplinary Sciences (CIS), NISER, 752050, Jatni, Odisha, India
| | - J N Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurdha, 752050, Odisha, India. .,Centre for Interdisciplinary Sciences (CIS), NISER, 752050, Jatni, Odisha, India
| |
Collapse
|
6
|
Shi J, Chen T, Sun X. The effect of heteroatom doping on the active metal site of CoS 2 for hydrogen evolution reaction. RSC Adv 2022; 12:17257-17263. [PMID: 35765429 PMCID: PMC9186305 DOI: 10.1039/d2ra01865a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
The exploration of cost-effective hydrogen evolution reaction (HER) electrocatalysts through water splitting is important for developing clean energy technology and devices. The application of CoS2 in HER has been drawing more and more attention due to its low cost and relatively satisfactory HER catalytic performance. And CoS2 was found to exhibit excellent HER catalytic performance after appropriate doping according to other experimental investigations. However, the theoretical simulation and the intrinsic catalytic mechanism of CoS2 remains insufficiently investigated. Therefore, in this study, density functional theory is used to investigate the HER catalytic activity of CoS2 doped with a heteroatom. The results show that Pt-, N- and O-doped CoS2 demonstrates smaller Gibbs free energies close to that of Pt, compared with the original CoS2 and CoS2 doped with other atoms. Furthermore, HER catalytic performance of CoS2 can be improved by tuning d-band centers of H adsorption sites. This study provides an effective method to achieve modified CoS2 for high-performance HER and to investigate other transition metal sulfides as HER electrode.
Collapse
Affiliation(s)
- Jianjian Shi
- School of Electronic Engineering, Chengdu Technological University Chengdu 611730 PR China
| | - Tao Chen
- School of Electronic Engineering, Chengdu Technological University Chengdu 611730 PR China
| | - Xiaoli Sun
- Department of Energy and Power Engineering, Tsinghua University Beijing 100084 P. R. China
- Beijing Graphene Institute Beijing 100095 P. R. China
| |
Collapse
|
7
|
Chen B, Jiang ZJ, Wang Y, Yan H, Jiang Z. In-situ single-phase derived NiCoP/CoP hetero-nanoparticles on aminated-carbon nanotubes as highly efficient pH-universal electrocatalysts for hydrogen evolution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Liu W, Xiao Z, Chandrasekaran S, Fan D, Li W, Lu H, Liu Y. Insights into the Effect of Sulfur Incorporation into Tungsten Diphosphide for Improved Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16157-16164. [PMID: 35357140 DOI: 10.1021/acsami.1c24363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exploring the highly active and stable nonprecious metal electrocatalysts is particularly important for the advancement of water electrolysis, whereas it remains a challenge to efficiently improve the intrinsic electrocatalytic activity. Herein, we reasonably constructed a self-supporting nanosheet array material with sulfur incorporated into WP2. Because of the tunability of electronic configuration and the formation of partial metal phase sulfides, the optimized catalyst exhibits a low overpotential of 115 mV at 10 mA cm-2, along with superb durability over 24 h in acidic media. Furthermore, theoretical calculations reveal that sulfur substitution effectively manipulates the local electronic configuration of WP2, which reduces the interaction between the catalyst surface and hydrogen atoms, thus improving the intrinsic activity of the hydrogen evolution reaction. This work provides valuable insight into the rational fabrication of highly efficient flexible electrode materials based on resourceful electrocatalysts for electrochemical water splitting.
Collapse
Affiliation(s)
- Wei Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Zhizhong Xiao
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Sundaram Chandrasekaran
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Dayong Fan
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Wei Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Huidan Lu
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Yongping Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
9
|
In-situ fabrication of Ni xSe y/MoSe 2 hollow rod array for enhanced catalysts for efficient hydrogen evolution reaction. J Colloid Interface Sci 2022; 617:611-619. [PMID: 35305473 DOI: 10.1016/j.jcis.2022.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 01/21/2023]
Abstract
Alkaline water electrocatalysis is considered as one of the most reliable method to prepare the stable, inexpensive, and sustainable water splitting catalyst in large-scale. Recently, MoSe2 attracted great attention as a promising catalyst because of its high electrochemical activity and earth-abundant nature. In this paper, bionic NixSey/MoSe2 coralline-liked heterogeneous structures were successfully prepared on 3D nickel foam (NF) via a simple solvothermal process complemented by hydrothermal strategy with selenization and alkali treatment. Furthermore, to overcome the less active sites and poor electrical conductivity of MoSe2, we learned from the coral structure for the inspiration, and reported a novel hollow rod-like structure with increased active sites. Also, 1 T-2H MoSe2 improved the electrical conductivity of single phase MoSe2. We first confirmed the multi-phase of catalyst by XPS analysis with Mo 3d5/2 splited into two independent regions with the 2H and 1 T phase transition. The optimal ratio of NixSey/MoSe2/NF-5 exhibited excellent electrocatalytic activity towards HER in 1 M KOH, driving current densities of 10, 100 and 200 mA cm-2 at only 76, 165 and 194 mV with stability over 24 h. The work provides new ideas for the construction of transition metal selenides hollow rod array structures of efficient HER electrocatalysts.
Collapse
|