Guo Z, Zhang C, He T, Xiao H, Jin J, Yao Q, Ye T, Chen X. Virus-Like Magnetic Heterostructure: an Outstanding Metal-Complex Active Platform Enables High-Efficiency Separation and Catalysis.
SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023;
19:e2303765. [PMID:
37537703 DOI:
10.1002/smll.202303765]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/13/2023] [Indexed: 08/05/2023]
Abstract
Assembled heterostructure systems, as emerging functional materials, have broad applications ranging from enzyme and drug payload to catalysis and purification. However, these require trial- and -error design process and complex experimental environment to generate heterostructure materials. Here, this study describes an easy-to-execute strategy to fabricate magnetic heterostructure as multifunctional delivery system. We utilize first-row transition metal copper and nitroso/amino ligand as modules to assemble around Fe3 O4 magnetic nanoparticles by excessed mild stimuli and fabricate the magnetic heterostructure materials (Fe3 O4 @ TACN NPs (tetraamminecopper (II) nitrate)). Notably, the Fe3 O4 @ TACN NPs present with cat's-whisker structure containing ligand and metal center. The nitroso-group ligands exhibit strong binding affinity to heme-structure enzyme, ensuring effective capture and isolate of cytochrome C (Cyt-c), resulting in their excellent isolation property. The copper complex-powered magnetic heterostructure materials can effectively isolation Cyt-c from complex biological sample (pork heart). Importantly, the Fe3 O4 @ TACN NPs coordinated with heme-structure, induced methionine 80 (Met80) disassociates from heme prosthetic group, and contributed to peroxidase-like (POD-like) activities increasing. These results exhibit that copper complex-powered magnetic heterostructure materials can not only satisfy the Cyt-c isolation and immobilization in an alkaline medium, but also be of the potential for improving the immobilization enzyme reactor performance.
Collapse