1
|
Sanko V, Şenocak A, Yeşilot S, Tümay SO. The fabrication of a hybrid fluorescent nanosensing system and its practical applications via film kits for the selective determination of mercury ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124677. [PMID: 38908110 DOI: 10.1016/j.saa.2024.124677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Heavy metal ions especially mercury exposure have severe toxic effects on living organisms and human health. Therefore, easy, accessible, and accurate determination strategies for the selective specification of mercury ions are essential for numerous disciplines. In the presented paper, new hybrid fluorescent iron oxide nanoparticles labeled with carbazole and triazole units (CT-IONP) were prepared via surface modification for the spectrofluorimetric determination of Hg2+ in environmental samples. The structure of the new sensing system is characterized via various spectroscopic, thermal, and microscopic techniques. Under optimized conditions, the hybrid system is not only used in fully water media but also highly fluorescent which led to the "turn-off" response towards Hg2+ ion in the presence of various competitive species. The presented sensing system was successfully used for the determination of Hg2+ ions in the wide linear working range (0.02-10.00 µmol.L-1) at nanomolar levels, where the limit of detection and quantification were calculated as 7.38 and 22.14 nmol.L-1. Importantly, the practical application of hybrid material was applied by CT-IONP embedded polycaprolactone (PCL) polymer film kits. The bluish color of fabricated film kits was instantly and dramatically turned colorless-dark patterns after the addition of Hg2+ ions, which resulted in convenient and rapid film test kits for selective detection.
Collapse
Affiliation(s)
- Vildan Sanko
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye; Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Türkiye.; METU MEMS Center, Ankara 06520, Türkiye
| | - Ahmet Şenocak
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye
| | - Serkan Yeşilot
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye
| | - Süreyya Oğuz Tümay
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye; Department of Chemistry, Faculty of Science, Atatürk University, Erzurum 25100, Türkiye.
| |
Collapse
|
2
|
Zhang R, Yang J, Cao Y, Zhang Q, Xie C, Xiong W, Luo X, He Y. Efficient 2D MOFs nanozyme combining with magnetic SERS substrate for ultrasensitive detection of Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124062. [PMID: 38401506 DOI: 10.1016/j.saa.2024.124062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Biomimetic inorganic nanoenzyme is a kind of nanomaterial with long-term stability, easy preparation and low cost, which could instead of natural biological enzyme. Metal-organic framework (MOFs) as effectively nanoenzyme was attracted more attention for the adjustability and large specific surface area. This design is based on the catalase-like catalytic activity of 2D metal-organic frameworks (MOFs) and the high sensitivity of surface enhanced Raman spectroscopy (SERS) biosensors to construct a novel SERS biosensor capable of efficiently detecting mercury (Hg2+). In this study, 2D MOFs nanozyme was instead of 3D structure with more effecient catalytic site, which can catalyze o-Phenylenediamine (OPD) to OPDox with the assistance of H2O2. Besides, a magnetic composite nanomaterial Fe3O4@Ag@OPD was prepared as a signal carrier. In the presence of Hg2+, T-Hg2+-T base pairs were used to connect the two materials to realize Raman signal change. Based on this principle, the SERS sensor can realize the sensitive detection of Hg2+, the detection range is 1.0 × 10-12 ∼ 1.0 × 10-2 mol‧L-1, and the detection limit is 1.36 × 10-13 mol‧L-1. This method greatly improves the reliability of SERS sensor for detecting the target, and provides a new idea for detecting metal ions in the environment.
Collapse
Affiliation(s)
- Runzi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Jia Yang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Yongguo Cao
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Qianyan Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Chenfeng Xie
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Wanyi Xiong
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, China.
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, China.
| |
Collapse
|
3
|
Li K, Ying J, Liu T, Tian A, Wang X. A series of viologen complexes containing thiophene and Br - dual fluorescent chromophores for continuous visual sensing of pH and Hg 2. Dalton Trans 2024; 53:2741-2748. [PMID: 38226649 DOI: 10.1039/d3dt03415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The mercury ion (Hg2+) is a typical high-toxicity substance that can cause severe damage to the environment and human bodies. For the detection of Hg2+, there are still significant challenges in the detection range and limit of detection (LOD). In this study, three viologen-based fluorescent probes are developed, CdCl4(Btybipy) (1), ZnBr4(Btybipy) (2), CdBr4(Btybipy) (3) (Btybipy = bis-1-thiophen-3-ylmethyl-[4,4']-bipyridinyl) through conventional solvent methods for detecting pH and Hg2+. Reversible discoloration and fluorescence response behaviour in the pH range of 4-12.8 is demonstrated by viologen-based fluorescent probes, which exhibit "ON-OFF-ON" signal changes. Compared with complex 1, it is surprising to find that complexes 2-3 display both fluorescence enhancement and fluorescence quenching simultaneously with the addition of different concentrations of Hg2+ (0-20 and 25-400 μM). There is broad linearity in the range of 0-20 and 50-300 μM with LODs of 2.14 and 3.13 nM, respectively. This occurrence of dual-signal modes is attributed to the participation of Br- and the thiophene S atom as dual chromophores in the coordination reaction of Hg2+. Dual-signal mode output, high sensitivity, wide detection range, and low LODs are exhibited by these fluorescent probes. The unique coordination reaction between Br- and the thiophene S atom with Hg2+ can provide a potential strategy for the exploitation of promising sensing platforms for monitoring Hg2+.
Collapse
Affiliation(s)
- Kai Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China.
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China.
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China.
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China.
| |
Collapse
|
4
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
5
|
Zhang J, Deng Z, Feng H, Shao B, Liu D. A multifunctional fluorescent sensor for Ag + and Hg 2+ detection in seawater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:22. [PMID: 38060083 DOI: 10.1007/s10661-023-12217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
In order to detect Ag+ and Hg2+ in seawater, we explored a multifunctional fluorescence sensor. A multifunctional Ag+ and Hg2+ sensor was designed by using gold nanoparticles (AuNPs) as quenching agent, PicoGreen dye as fluorescent probe of base pairing double-stranded deoxyribonucleic acid (DNA), and combining the characteristics of Ag+ making C base mismatch and Hg2+ making T base mismatch. Meanwhile, the DNA logic gate was constructed by establishing logic circuit, truth table, and logic formula. The relevant performances of the sensor were investigated. The results revealed that the sensor can detect Ag+ in the range of 100 to 700 nM with R2 = 0.98129, and its detection limit is 16.88 nM (3σ/slope). The detection range of Hg2+is 100-900 nM with R2 = 0.99725, and the detection limit is 5.59 nM (3σ/slope). An AND-AND-NOR-AND molecular logic gate has been successfully designed. With the characteristics of high sensitivity, multifunction, and low cost, the recommended detection method has the potential to be applied to the detection of Ag+ and Hg2+ in seawater.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Applied Science and Technology, Hainan University, Danzhou, 571737, China
| | - Ziqi Deng
- College of Applied Science and Technology, Hainan University, Danzhou, 571737, China
| | - Hongbo Feng
- College of Applied Science and Technology, Hainan University, Danzhou, 571737, China
| | - Bingqian Shao
- College of Applied Science and Technology, Hainan University, Danzhou, 571737, China.
| | - Debing Liu
- College of Applied Science and Technology, Hainan University, Danzhou, 571737, China.
| |
Collapse
|
6
|
Dong X, Wang H, Zhao L, Li Y, Fan D, Ma H, Wu D, Wei Q. A photoelectrochemical sensor for Hg 2+ detection with enhanced cathodic photocurrent via BiOI/Bi 2S 3 photoanode of self-sacrifice. Mikrochim Acta 2023; 190:288. [PMID: 37423906 DOI: 10.1007/s00604-023-05857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Due to the inherent merits of the anodic photoelectrochemical (PEC) sensor, it was widely utilized in the field of analytical chemistry. However, it must be noted that the anodic PEC sensor was susceptible to interference in practical applications. The situation with the cathodic PEC sensor was exactly the opposite. Therefore, this work fabricated a PEC sensor combining photoanode and photocathode that solved the defects of conventional PEC sensors in detecting Hg2+. Specifically, Na2S solution was carefully dropped on the BiOI-modified indium-tin oxide (ITO) to obtain ITO/BiOI/Bi2S3 directly by self-sacrifice method and the resulting electrode was used as photoanode. In addition, a sequential modification process was employed to decorate the ITO substrate with Au nanoparticles (Au NPs), Cu2O, and L-cysteine (L-cys), thereby realizing the fabrication of the photocathode. Moreover, the presence of Au NPs further amplified the photocurrent of the PEC platform. During the detection process, when Hg2+ is present it will bind to the L-cys, resulting in an increase in current, thus enabling sensitive detection of Hg2+. The proposed PEC platform exhibited good stability and reproducibility, providing a new idea for the detection of other heavy metal ions.
Collapse
Affiliation(s)
- Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hanyu Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Lu Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yuyang Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
7
|
Zheng X, Shi Z, Fu C, Ji Y, Chi B, Ai F, Yan X. A novel fluorescent nanoprobe based on potassium permanganate-functionalized Ti 3C 2 QDs for the unique "turn-on" dual detection of Cr 3+ and Hg 2+ ions. Mikrochim Acta 2023; 190:153. [PMID: 36961633 DOI: 10.1007/s00604-023-05710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/19/2023] [Indexed: 03/25/2023]
Abstract
Titanium carbide quantum dots (Ti3C2 QDs) were synthesized by ammonia-assisted hydrothermal method. We also synthesized potassium permanganate (KMnO4)-functionalized Ti3C2 QDs (Mn-QDs) by modifying Ti3C2 nanosheets with KMnO4 and then cutting the functional nanosheets into Mn-QDs. The Ti3C2 QDs and Mn-QDs were characterized by fluorescence spectroscopy (FL), Fourier transform infrared spectroscopy (FTIR), UV-vis spectrophotometry (UV-vis), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Furthermore, the modified Mn-QDs have strong luminescence ability and good dispersion stability, which can be used for Cr3+ and Hg2+ double ion detection with enhanced fluorescence specificity. Cr3+/Hg2+ and negatively charged Mn-QDs are bound together by electrostatic interactions. Meanwhile, the surface of Mn-QDs is rich in functional groups, which interacts with Cr3+/Hg2+ to modify the surface traps, leading to defect passivation and exhibiting photoluminescence enhancement. For the dynamic quenching produced by the interaction of Mn-QDs with Hg2+ within 50 μM, it may be caused by the complex formation of Hg2+ trapped by the amino group on the surface of Mn-QDs. The detection limits for Cr3+ and Hg2+ were 0.80 μM and 0.16 μM, respectively. The recoveries of Cr3+ and Hg2+ ions in real water samples were 93.79-105.10% and 93.91-102.05%, respectively, by standard addition recovery test. In this work, the application of Mn-QDs in Cr3+ and Hg2+ ion detection was researched, which opens a new way for its application in the field of detecting heavy metal ions.
Collapse
Affiliation(s)
- Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Zhiying Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Chaojun Fu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yuanlin Ji
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Fanrong Ai
- Bio 3D Printing Laboratory, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiluan Yan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
- College of Pharmacy, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
8
|
Lu Z, Chen M, Liu T, Wu C, Sun M, Su G, Wang X, Wang Y, Yin H, Zhou X, Ye J, Shen Y, Rao H. Machine Learning System To Monitor Hg 2+ and Sulfide Using a Polychromatic Fluorescence-Colorimetric Paper Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9800-9812. [PMID: 36750421 DOI: 10.1021/acsami.2c16565] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An optical monitoring device combining a smartphone with a polychromatic ratiometric fluorescence-colorimetric paper sensor was developed to detect Hg2+ and S2- in water and seafood. This monitoring included the detection of food deterioration and was made possible by processing the sensing data with a machine learning algorithm. The polychromatic fluorescence sensor was composed of blue fluorescent carbon quantum dots (CDs) (BU-CDs) and green and red fluorescent CdZnTe quantum dots (QDs) (named GN-QDs and RD-QDs, respectively). The experimental results and density functional theory (DFT) prove that the incorporation of Zn can improve the stability and quantum yield of CdZnTe QDs. According to the dynamic and static quenching mechanisms, GN-QDs and RD-QDs were quenched by Hg2+ and sulfide, respectively, but BU-CDs were not sensitive to them. The system colors change from green to red to blue as the concentration of the two detectors rises, and the limits of detection (LOD) were 0.002 and 1.488 μM, respectively. Meanwhile, the probe was combined with the hydrogel to construct a visual sensing intelligent test strip, which realized the monitoring of food freshness. In addition, a smartphone device assisted by multiple machine learning methods was used to text Hg2+ and sulfide in real samples. It can be concluded that the fabulous stability, sensitivity, and practicality exhibited by this sensing mechanism give it unlimited potential for assessing the contents of toxic and hazardous substances Hg2+ and sulfide.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Maoting Chen
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu 611130, P. R. China
| | - Xinguang Zhou
- Shenzhen NTEK Testing Technology Co., Ltd., Shenzhen 518000, P. R. China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an 625014, P. R. China
| |
Collapse
|
9
|
Effect of secondary bis-pyridine-bis-amide ligand on the construction of Zn-based coordination polymers and the enhancement of ultrasensitive luminescent sensing properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Fu Y, Du C, Zhang Q, Xiao K, Zhang X, Chen J. Colorimetric and Photocurrent-Polarity-Switching Photoelectrochemical Dual-Mode Sensing Platform for Highly Selective Detection of Mercury Ions Based on the Split G-Quadruplex-Hemin Complex. Anal Chem 2022; 94:15040-15047. [PMID: 36259408 DOI: 10.1021/acs.analchem.2c03084] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mercury ion (Hg2+) is one of the most harmful heavy metal ions with the greatest impact on public health. Herein, based on the excellent catalytic activity toward 3,3',5,5'-tetramethylbenzidine (TMB) and the strong photocurrent-polarity-switching ability to SnS2 photoanode of the split G-quadruplex-hemin complex, the magnetic NiCo2O4@SiO2-NH2 sphere-assisted colorimetric and photoelectrochemical (PEC) dual-mode sensing platform was developed for the Hg2+ assay. First, the amino-labelled single-stranded DNA1 (S1) was immobilized on NiCo2O4@SiO2-NH2 and then partly hybridized with another single-stranded DNA2 (S2). When Hg2+ was present, the thymine-Hg2+-thymine base pairs between S1 and S2 were formed, causing the formation of the split G-quadruplex in the presence of K+. After addition of hemin, the split G-quadruplex-hemin complex was obtained and effectually catalyzed the H2O2-mediated oxidation of TMB. Thus, the color and absorbance intensity of the TMB solution were changed, resulting in the visual and colorimetric detection of Hg2+. The linear response range is 10 pM to 10 nM, and the detection limit is 3.8 pM. Meanwhile, the above G-quadruplex-hemin complex effectively switched the photocurrent polarity of SnS2-modified indium tin oxide electrode, leading to the sensitive and selective PEC assay of Hg2+ with a linear response range of 5 pM to 500 nM and a detection limit of 2.3 pM. Moreover, the developed dual-mode sensing platform provided mutual authentication of detection results in different modes, effectively improving the assay accuracy and confidence, and may have a good potential application in highly sensitive, selective, and accurate determination of Hg2+ in environmental fields.
Collapse
Affiliation(s)
- Yamin Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.,Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, P. R. China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qingqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ke Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
11
|
Huang Y, Zhang S, Chen Y, Dai H, Lin Y. Modular and Noncontact Wireless Detection Platform for Ovarian Cancer Markers: Electrochemiluminescent and Photoacoustic Dual-Signal Output Based on Multiresponse Carbon Nano-Onions. Anal Chem 2022; 94:13269-13277. [DOI: 10.1021/acs.analchem.2c03337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yitian Huang
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 32400, China
| | - Yanjie Chen
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Hong Dai
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 32400, China
| | - Yanyu Lin
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
| |
Collapse
|
12
|
Self-Powered Photoelectrochemical Assay for Hg2+ Detection Based on g-C3N4-CdS-CuO Composites and Redox Cycle Signal Amplification Strategy. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A highly sensitive self-powered photoelectrochemical (spPEC) sensing platform was constructed for Hg2+ determination based on the g-C3N4-CdS-CuO co-sensitized photoelectrode and a visible light-induced redox cycle for signal amplification. Through successively coating the single-layer g-C3N4, CdS, and CuO onto the surface of an electrode, the modified electrode exhibited significantly enhanced PEC activity. The microstructure of the material was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). However, the boost in photocurrent could be noticeably suppressed due to the consumption of hole-scavenging agents (reduced glutathione) by the added Hg2+. Under optimal conditions, we discovered that the photocurrent was linearly related to the Hg2+ concentration in the range of 5 pM–100 nM. The detection limit for Hg2+ was 0.84 pM. Moreover, the spPEC sensor demonstrated good performance for the detection of mercury ions in human urine and artificial saliva.
Collapse
|
13
|
Rapid Determination of Mercury Ions in Environmental Water Based on an N-Rich Covalent Organic Framework Potential Sensor. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/3112316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this article, an N-rich covalent organic framework (COFTFPB-TZT) was successfully synthesized using 4,4′,4′-(1,3,5-triazine-2,4,6-triyl) trianiline (TZT), and 4-[3,5-bis (4-formyl-phenyl) phenyl] benzaldehyde (TFPB). The as-prepared COFTFPB-TZT possesses irregular cotton wool patches with a large specific surface area. A novel selective electrode based on COFTFPB-TZT was used for the determination of Mercury ions. The abundance of N atoms in COFTFPB-TZT provides more coordination sites for Hg2+ adsorption, resulting in a change in the surface membrane potential of the electrode to selectively recognize Hg2+. Under optimal experimental conditions, the ion-selective electrode shows a good potential response to Hg2+, with a linear range of 1.0 × 10−9∼1.0 × 10−4, a Nernst response slope of 30.32 ± 0.2 mV/-PC at 25°C and a detection limit of 4.5 pM. At the same time, the mercury-ion electrode shows a fast response time of 10 s and good reproducibility and stability. The selectivity coefficients for Fe2+, Zn2+, As3+, Cr6+, Cu2+, Cr3+, Al3+, Pb2+, NH4+, Ag+, Ba2+, Mg2+, Na+, and K+ are found to be small, indicating no interference in the detection system. The proposed method can be successfully applied to the determination of Hg2+ in 3 typical environmental water samples, with a recovery rate of 98.6–101.8%. In comparison with the spectrophotometric method utilizing dithizone, the proposed method is simple and fast and holds great potential application prospects in environmental water quality monitoring and other fields.
Collapse
|
14
|
Hao Guo NW, Peng L, Chen Y, Liu Y, Li C, Zhang H, Yang W. A novel ratiometric fluorescence sensor based on lanthanide-functionalized MOF for Hg 2+ detection. Talanta 2022; 250:123710. [PMID: 35785609 DOI: 10.1016/j.talanta.2022.123710] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Post-synthesis modification is an effective strategy for the preparation of rare earth organic framework materials and the derivation of high-performance functional materials. Here, we report the preparation of a dual emission Ln-MOF material (Eu-Ca-MOF) using Ca-MOF as the parent framework and introducing Eu3+ ions into its channels through post-synthesis modification. Eu-Ca-MOF has good photoluminescence properties and can be used as a ratiometric fluorescence sensor (I381/I590) to detect Hg2+ ions in water sensitively. The characteristic of Eu-Ca-MOF obtained is that when the material is dispersed in an aqueous solution containing Hg2+ ions, the characteristic emission of the ligand at 381 nm is enhanced, while the characteristic emission of Eu3+ at 590 nm is quenched. The peak-to-height ratio of the two emissions can be used to achieve highly sensitive detection of Hg2+ ions even in the presence of other potentially competing analytes. In addition, Hg2+ induces Eu-Ca-MOF to produce a significant ratiometric luminescence response, which changes its luminescence color from red to blue, which is beneficial to visual analysis of naked eyes. At the same time, Eu-Ca-MOF has a wider detection range (0.02-200 μM), and a lower limit detection (2.6 nM) for Hg2+ ions. The lanthanide compounds prepared by post-synthetic modification provide an effective synthesis strategy for photoluminescent materials.
Collapse
Affiliation(s)
- Ning Wu Hao Guo
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| | - Liping Peng
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Yuan Chen
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Yinsheng Liu
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Cuiliu Li
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Hao Zhang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Wu Yang
- Key Lab of Eco-Environments Related Polymer Materials of MOE, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| |
Collapse
|
15
|
Gao Y, Zeng Y, Liu X, Tang D. Liposome-Mediated In Situ Formation of Type-I Heterojunction for Amplified Photoelectrochemical Immunoassay. Anal Chem 2022; 94:4859-4865. [PMID: 35263077 DOI: 10.1021/acs.analchem.2c00283] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exploiting innovative sensing mechanisms and their rational implementation for selective and sensitive detection has recently become one of the mainstream research directions of photoelectrochemical (PEC) bioanalysis. In contrast to existing conventional strategies, this study presents a new liposome-mediated method via in situ combining ZnInS nanosheets (ZIS NSs) with SnS2 to form a ZIS NSs/SnS2 type-I heterojunction on fluorine-doped tin oxide (FTO) electrodes for highly sensitive PEC immunoassays. Specifically, alkaline phosphatase (ALP)-encapsulated liposomes were confined within 96-well plates by sandwich immunorecognition and subsequently subjected to lysis treatment. Enzymatically produced H2S by the released ALP was then directed to react with Sn(IV) to engender the ZIS NSs/SnS2 type-I heterojunction on the FTO/ZIS NSs-Sn(IV) electrode, resulting in a change in the photogenerated electron-hole transfer path of the photoelectrode and reduction in current signaling. Exemplified by heart-type fatty acid binding protein (h-FABP) as a target, the constructed PEC sensor showed good stability and selectivity in a biosensing system. Under optimal conditions, the as-prepared sensing platform displayed high sensitivity for h-FABP with a dynamic linear response range of 0.1-1000 pg/mL and a lower detection limit of 55 fg/mL. This research presents the liposome-mediated PEC immunoassay based on in situ type-I heterojunction establishment, providing a new protocol for analyzing various targets of interest.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
16
|
Ali S, Mansha M, Baig N, Khan SA. Recent Trends and Future Perspectives of Emergent Analytical Techniques for Mercury Sensing in Aquatic Environments. CHEM REC 2022; 22:e202100327. [PMID: 35253977 DOI: 10.1002/tcr.202100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 11/10/2022]
Abstract
Environmental emissions of mercury from industrial waste and natural sources, even in trace amounts, are toxic to organisms and ecosystems. However, industrial-scale mercury detection is limited by the high cost, low sensitivity/specificity, and poor selectivity of the available analytical tools. This review summarizes the key sensors for mercury detection in aqueous environments: colorimetric-, electrochemical-, fluorescence-, and surface-enhanced Raman spectroscopy-based sensors reported between 2014-2021. It then compares the performances of these sensors in the determination of inorganic mercury (Hg2+ ) and methyl mercury (CH3 Hg+ ) species in aqueous samples. Mercury sensors for aquatic applications still face serious challenges in terms of difficult deployment in remote areas and low robustness, reliability, and selectivity in harsh environments. We provide future perspectives on the selective detection of organomercury species, which are especially toxic and reactive in aquatic environments. This review is intended as a valuable resource for scientists in the field of mercury sensing.
Collapse
Affiliation(s)
- Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
17
|
Veerakumar P, Jaysiva G, Chen SM, Lin KC. Development of Palladium on Bismuth Sulfide Nanorods as a Bifunctional Nanomaterial for Efficient Electrochemical Detection and Photoreduction of Hg(II) Ions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5908-5920. [PMID: 35042336 DOI: 10.1021/acsami.1c16723] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ganesamurthi Jaysiva
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
18
|
Low-temperature and anhydrous preparation of NixFey-LDHs as an efficient electrocatalyst for water and urea electrolysis. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2021.106390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
19
|
Co-N-C single-atom nanozymes with oxidase-like activity for highly sensitive detection of biothiols. Anal Bioanal Chem 2022; 414:1857-1865. [PMID: 35028690 DOI: 10.1007/s00216-021-03816-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022]
Abstract
Biothiol detection is of great importance for clinical disease diagnosis. Previous nanozyme-based colorimetric sensors for biothiol detection showed unsatisfactory catalytic activity, which led to a high detection limit. Therefore, developing new nanozymes with the high catalytic activity for biothiol detection is extremely necessary. Recently, single-atom nanozymes (SAzymes) have attracted much attention in biosensing due to their 100% atom utilization and excellent catalytic activity. Most previous works focus on the peroxidase-like activity of Fe-based SAzymes by using unstable and destructive H2O2 as the oxidant. It is essential to develop new SAzymes with high oxidase-like activity for biosensing to break through the limitation. Herein, Co-N-C SAzymes with high oxidase-like activity are explored. Furthermore, Co-N-C SAzymes are used as a biosensor for colorimetric detection of biothiols (GSH/Cys) based on the inhibition of thiols toward the oxidase-like activity of Co-N-C SAzymes, which showed high sensitivity with a low detection limit of 0.07 µM for GSH and 0.06 µM for Cys. Besides, the method showed good reproducibility and high selectivity against other amino acids. This work offers new insights using Co-N-C SAzymes in the biosensing field.
Collapse
|
20
|
Dai S, Huang H, Liu S, Deng W, Tan Y, Xie Q. Au nanoclusters-decorated WO 3 nanorods for ultrasensitive photoelectrochemical sensing of Hg 2+. Analyst 2022; 147:5747-5753. [DOI: 10.1039/d2an01324j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ultrasensitive photoelectrochemical sensing of Hg2+ is achieved using Au nanocluster-decorated WO3 nanorods as photoactive materials.
Collapse
Affiliation(s)
- Si Dai
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hui Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Shihan Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|