1
|
Ahn J, Park S, Oh D, Lim Y, Nam JS, Kim J, Jung W, Kim ID. Rapid Joule Heating Synthesis of Oxide-Socketed High-Entropy Alloy Nanoparticles as CO 2 Conversion Catalysts. ACS NANO 2023. [PMID: 37229643 DOI: 10.1021/acsnano.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The unorthodox surface chemistry of high-entropy alloy nanoparticles (HEA-NPs), with numerous interelemental synergies, helps catalyze a variety of essential chemical processes, such as the conversion of CO2 to CO, as a sustainable path to environmental remediation. However, the risk of agglomeration and phase separation in HEA-NPs during high-temperature operations are lasting issues that impede their practical viability. Herein, we present HEA-NP catalysts that are tightly sunk in an oxide overlayer for promoting the catalytic conversion of CO2 with exceptional stability and performance. We demonstrated the controlled formation of conformal oxide overlayers on carbon nanofiber surfaces via a simple sol-gel method, which facilitated a large uptake of metal precursor ions and helped to decrease the reaction temperature required for nanoparticle formation. During the rapid thermal shock synthesis process, the oxide overlayer would also impede nanoparticle growth, resulting in uniformly distributed small HEA-NPs (2.37 ± 0.78 nm). Moreover, these HEA-NPs were firmly socketed in the reducible oxide overlayer, enabling an ultrastable catalytic performance involving >50% CO2 conversion with >97% selectivity to CO for >300 h without extensive agglomeration. Altogether, we establish the rational design principles for the thermal shock synthesis of high-entropy alloy nanoparticles and offer a helpful mechanistic perspective on how the oxide overlayer impacts the nanoparticle synthesis behavior, providing a general platform for the designed synthesis of ultrastable and high-performance catalysts that could be utilized for various industrially and environmentally relevant chemical processes.
Collapse
Affiliation(s)
- Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seyeon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - DongHwan Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yunsung Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong Seok Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Wang J, Hu L, Li W, Ouyang Y, Bai L. Development and Perspectives of Thermal Conductive Polymer Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3574. [PMID: 36296762 PMCID: PMC9611299 DOI: 10.3390/nano12203574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
With the development of electronic appliances and electronic equipment towards miniaturization, lightweight and high-power density, the heat generated and accumulated by devices during high-speed operation seriously reduces the working efficiency and service life of the equipment. The key to solving this problem is to develop high-performance thermal management materials and improve the heat dissipation efficiency of the equipment. This paper mainly summarizes the research progress of polymer composites with high thermal conductivity and electrical insulation, including the thermal conductivity mechanism of composites, the factors affecting the thermal conductivity of composites, and the research status of thermally conductive and electrical insulation polymer composites in recent years. Finally, we look forward to the research focus and urgent problems that should be addressed of high-performance thermal conductive composites, which will provide strategies for further development and application of advanced thermal and electrical insulation composites.
Collapse
Affiliation(s)
- Jiaqi Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Lin Hu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Wenhao Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuge Ouyang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Liuyang Bai
- College of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| |
Collapse
|