1
|
Wu H, Sun H, Oerlemans RAJF, Li S, Shao J, Wang J, Joosten RRM, Lou X, Luo Y, Zheng H, Abdelmohsen LKEA, Garza HHP, van Hest JCM, Friedrich H. Understanding, Mimicking, and Mitigating Radiolytic Damage to Polymers in Liquid Phase Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402987. [PMID: 39548916 DOI: 10.1002/adma.202402987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Advances in liquid phase transmission electron microscopy (LP-TEM) have enabled the monitoring of polymer dynamics in solution at the nanoscale, but radiolytic damage during LP-TEM imaging limits its routine use in polymer science. This study focuses on understanding, mimicking, and mitigating radiolytic damage observed in functional polymers in LP-TEM. It is quantitatively demonstrated how polymer damage occurs across all conceivable (LP-)TEM environments, and the key characteristics and differences between polymer degradation in water vapor and liquid water are elucidated. Importantly, it is shown that the hydroxyl radical-rich environment in LP-TEM can be approximated by UV light irradiation in the presence of hydrogen peroxide, allowing the use of bulk techniques to probe damage at the polymer chain level. Finally, the protective effects of commonly used hydroxyl radical scavengers are compared, revealing that the effectiveness of graphene's protection is distance-dependent. The work provides detailed methodological guidance and establishes a baseline for polymer degradation in LP-TEM, paving the way for future research on nanoscale tracking of shape transitions and drug encapsulation of polymer assemblies in solution.
Collapse
Affiliation(s)
- Hanglong Wu
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, Delft, 2628 ZD, The Netherlands
| | - Roy A J F Oerlemans
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Siyu Li
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jianhong Wang
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Rick R M Joosten
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Xianwen Lou
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Yingtong Luo
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Hongkui Zheng
- DENSsolutions B.V., Informaticalaan 12, Delft, 2628 ZD, The Netherlands
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | | | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Heiner Friedrich
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
2
|
Woehl TJ, Alloyeau D. Direct nanoscopic imaging of the hydrated nanoparticle-ligand interface. Nat Chem 2024; 16:1223-1224. [PMID: 39054381 DOI: 10.1038/s41557-024-01583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Affiliation(s)
- Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD, USA.
| | - Damien Alloyeau
- Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS/Université Paris Diderot, Paris, France.
| |
Collapse
|
3
|
Liu C, Lin O, Pidaparthy S, Ni H, Lyu Z, Zuo JM, Chen Q. 4D-STEM Mapping of Nanocrystal Reaction Dynamics and Heterogeneity in a Graphene Liquid Cell. NANO LETTERS 2024; 24:3890-3897. [PMID: 38526426 DOI: 10.1021/acs.nanolett.3c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Chemical reaction kinetics at the nanoscale are intertwined with heterogeneity in structure and composition. However, mapping such heterogeneity in a liquid environment is extremely challenging. Here we integrate graphene liquid cell (GLC) transmission electron microscopy and four-dimensional scanning transmission electron microscopy to image the etching dynamics of gold nanorods in the reaction media. Critical to our experiment is the small liquid thickness in a GLC that allows the collection of high-quality electron diffraction patterns at low dose conditions. Machine learning-based data-mining of the diffraction patterns maps the three-dimensional nanocrystal orientation, groups spatial domains of various species in the GLC, and identifies newly generated nanocrystallites during reaction, offering a comprehensive understanding on the reaction mechanism inside a nanoenvironment. This work opens opportunities in probing the interplay of structural properties such as phase and strain with solution-phase reaction dynamics, which is important for applications in catalysis, energy storage, and self-assembly.
Collapse
Affiliation(s)
- Chang Liu
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Oliver Lin
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Saran Pidaparthy
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Haoyang Ni
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Zhiheng Lyu
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jian-Min Zuo
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Liu L, Kluherz K, Jin B, Gamelin DR, De Yoreo JJ, Sushko ML. Oriented Assembly of Lead Halide Perovskite Nanocrystals. NANO LETTERS 2024; 24:3299-3306. [PMID: 38442266 DOI: 10.1021/acs.nanolett.3c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Cesium lead halide nanostructures have highly tunable optical and optoelectronic properties. Establishing precise control in forming perovskite single-crystal nanostructures is key to unlocking the full potential of these materials. However, studying the growth kinetics of colloidal cesium lead halides is challenging due to their sensitivity to light, electron beam, and environmental factors like humidity. In this study, in situ observations of CsPbBr3-particle dynamics were made possible through extremely low dose liquid cell transmission electron microscopy, showing that oriented attachment is the dominant pathway for the growth of single-crystal CsPbBr3 architectures from primary nanocubes. In addition, oriented assembly and fusion of ligand-stabilized cubic CsPbBr3 nanocrystals are promoted by electron beam irradiation or introduction of polar additives that both induce partial desorption of the original ligands and polarize the nanocube surfaces. These findings advance our understanding of cesium lead halide growth mechanisms, aiding the controlled synthesis of other perovskite nanostructures.
Collapse
Affiliation(s)
- Lili Liu
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kyle Kluherz
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Biao Jin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98185, United States
| | - Maria L Sushko
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
5
|
Kim A, Akkunuri K, Qian C, Yao L, Sun K, Chen Z, Vo T, Chen Q. Direct Imaging of "Patch-Clasping" and Relaxation in Robust and Flexible Nanoparticle Assemblies. ACS NANO 2024; 18:939-950. [PMID: 38146750 DOI: 10.1021/acsnano.3c09710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Polymer patching on inorganic nanoparticles (NPs) enables multifunctionality and directed self-assembly into nonclosely packed optical and mechanical metamaterials. However, experimental demonstration of such assemblies has been scant due to challenges in leveraging patch-induced NP-NP attractions and understanding NP self-assembly dynamics. Here we use low-dose liquid-phase transmission electron microscopy to visualize the dynamic behaviors of tip-patched triangular nanoprisms upon patch-clasping, where polymer patches interpenetrate to form cohesive bonds that connect NPs. Notably, these bonds are longitudinally robust but rotationally flexible. Patch-clasping is found to allow highly selective tip-tip assembly, interconversion between dimeric bowtie and sawtooth configurations, and collective structural relaxation of NP networks. The integration of single particle tracking, polymer physics theory, and molecular dynamics simulation reveals the macromolecular origin of patch-clasping-induced NP dynamics. Our experiment-computation integration can aid the design of stimuli-responsive nanomaterials, such as topological metamaterials for chiral sensors, waveguides, and nanoantennas.
Collapse
Affiliation(s)
- Ahyoung Kim
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Kireeti Akkunuri
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chang Qian
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Lehan Yao
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Kai Sun
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zi Chen
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Thi Vo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Goldmann C, Chaâbani W, Hotton C, Impéror-Clerc M, Moncomble A, Constantin D, Alloyeau D, Hamon C. Confinement Effects on the Structure of Entropy-Induced Supercrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303380. [PMID: 37386818 DOI: 10.1002/smll.202303380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Depletion-induced self-assembly is routinely used to separate plasmonic nanoparticles (NPs) of different shapes, but less often for its ability to create supercrystals (SCs) in suspension. Therefore, these plasmonic assemblies have not yet reached a high level of maturity and their in-depth characterization by a combination of in situ techniques is still very much needed. In this work, gold triangles (AuNTs) and silver nanorods (AgNRs) are assembled by depletion-induced self-assembly. Small Angle X-ray Scattering (SAXS) and scanning electron microscopy (SEM) analysis shows that the AuNTs and AgNRs form 3D and 2D hexagonal lattices in bulk, respectively. The colloidal crystals are also imaged by in situ Liquid-Cell Transmission Electron Microscopy. Under confinement, the affinity of the NPs for the liquid cell windows reduces their ability to stack perpendicularly to the membrane and lead to SCs with a lower dimensionality than their bulk counterparts. Moreover, extended beam irradiation leads to disassembly of the lattices, which is well described by a model accounting for the desorption kinetics highlighting the key role of the NP-membrane interaction in the structural properties of SCs in the liquid-cell. The results shed light on the reconfigurability of NP superlattices obtained by depletion-induced self-assembly, which can rearrange under confinement.
Collapse
Affiliation(s)
- Claire Goldmann
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Wajdi Chaâbani
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Claire Hotton
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Marianne Impéror-Clerc
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Adrien Moncomble
- Université Paris-Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, Paris, 75013, France
| | - Doru Constantin
- Institut Charles Sadron, CNRS and Université de Strasbourg, Strasbourg, 67034, France
| | - Damien Alloyeau
- Université Paris-Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, Paris, 75013, France
| | - Cyrille Hamon
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| |
Collapse
|
7
|
Chen A, Dissanayake TU, Sun J, Woehl TJ. Unraveling chemical processes during nanoparticle synthesis with liquid phase electron microscopy and correlative techniques. Chem Commun (Camb) 2023; 59:12830-12846. [PMID: 37807847 DOI: 10.1039/d3cc03723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Liquid phase transmission electron microscopy (LPTEM) has enabled unprecedented direct real time imaging of physicochemical processes during solution phase synthesis of metallic nanoparticles. LPTEM primarily provides images of nanometer scale, and sometimes atomic scale, metal nanoparticle crystallization processes, but provides little chemical information about organic surface ligands, metal-ligand complexes and reaction intermediates, and redox reactions. Likewise, complex electron beam-solvent interactions during LPTEM make it challenging to pinpoint the chemical processes, some involving exotic highly reactive radicals, impacting nanoparticle formation. Pairing LPTEM with correlative solution synthesis, ex situ chemical analysis, and theoretical modeling represents a powerful approach to gain a holistic understanding of the chemical processes involved in nanoparticle synthesis. In this feature article, we review recent work by our lab and others that has focused on elucidating chemical processes during nanoparticle synthesis using LPTEM and correlative chemical characterization and modeling, including mass and optical spectrometry, fluorescence microscopy, solution chemistry, and reaction kinetic modeling. In particular, we show how these approaches enable investigating redox chemistry during LPTEM, polymeric and organic capping ligands, metal deposition mechanisms on plasmonic nanoparticles, metal clusters and complexes, and multimetallic nanoparticle formation. Future avenues of research are discussed, including moving beyond electron beam induced nanoparticle formation by using light and thermal stimuli during LPTEM. We discuss prospects for real time LPTEM imaging and online chemical analysis of reaction intermediates using microfluidic flow reactors.
Collapse
Affiliation(s)
- Amy Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, College Park, MD 20742, USA
| | - Thilini U Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD 20742, USA.
| | - Jiayue Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD 20742, USA
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD 20742, USA.
| |
Collapse
|
8
|
Samavati Z, Samavati A, Goh PS, Ismail AF, Abdullah MS. A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Sung J, Bae Y, Park H, Kang S, Choi BK, Kim J, Park J. Liquid-Phase Transmission Electron Microscopy for Reliable In Situ Imaging of Nanomaterials. Annu Rev Chem Biomol Eng 2022; 13:167-191. [PMID: 35700529 DOI: 10.1146/annurev-chembioeng-092120-034534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liquid-phase transmission electron microscopy (LPTEM) is a powerful in situ visualization technique for directly characterizing nanomaterials in the liquid state. Despite its successful application in many fields, several challenges remain in achieving more accurate and reliable observations. We present LPTEM in chemical and biological applications, including studies for the morphological transformation and dynamics of nanoparticles, battery systems, catalysis, biomolecules, and organic systems. We describe the possible interactions and effects of the electron beam on specimens during observation and present sample-specific approaches to mitigate and control these electron-beam effects. We provide recent advances in achieving atomic-level resolution for liquid-phase investigation of structures anddynamics. Moreover, we discuss the development of liquid cell platforms and the introduction of machine-learning data processing for quantitative and objective LPTEM analysis.
Collapse
Affiliation(s)
- Jongbaek Sung
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Yuna Bae
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Hayoung Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Sungsu Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Back Kyu Choi
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|