1
|
Hamzehpoor E, Effaty F, Borchers TH, Stein RS, Wahrhaftig-Lewis A, Ottenwaelder X, Friščić T, Perepichka DF. Mechanochemical Synthesis of Boroxine-linked Covalent Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202404539. [PMID: 38970305 DOI: 10.1002/anie.202404539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/08/2024]
Abstract
We report a rapid, room-temperature mechanochemical synthesis of 2- and 3-dimensional boroxine covalent organic frameworks (COFs), enabled by using trimethylboroxine as a dehydrating additive to overcome the hydrolytic sensitivity of boroxine-based COFs. The resulting COFs display high porosity and crystallinity, with COF-102 being the first example of a mechanochemically prepared 3D COF, exhibiting a surface area of ca. 2,500 m2 g-1. Mechanochemistry enabled a>20-fold reduction in solvent use and ~100-fold reduction in reaction time compared with solvothermal methods, providing target COFs quantitatively with no additional work-up besides vacuum drying. Real-time Raman spectroscopy permitted the first quantitative kinetic analysis of COF mechanosynthesis, while transferring the reaction design to Resonant Acoustic Mixing (RAM) enabled synthesis of multi-gram amounts of the target COFs (tested up to 10 g).
Collapse
Affiliation(s)
- Ehsan Hamzehpoor
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
| | - Farshid Effaty
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, H4B 1R6, Canada
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Tristan H Borchers
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Robin S Stein
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
- Bruker UK Ltd, Longwood Close, Westwood Business Park, Coventry, CV4 8HZ, United Kingdom
| | | | - Xavier Ottenwaelder
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, H4B 1R6, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
| |
Collapse
|
2
|
Ge S, Wei K, Peng W, Huang R, Akinlabi E, Xia H, Shahzad MW, Zhang X, Xu BB, Jiang J. A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control. Chem Soc Rev 2024; 53:11259-11302. [PMID: 39479879 DOI: 10.1039/d4cs00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) have gained considerable attention due to their design possibilities as the molecular organic building blocks that can stack in an atomically precise spatial arrangement. Since the inception of COFs in 2005, there has been a continuous expansion in the product range of COFs and their derivatives. This expansion has led to the evolution of three-dimensional structures and various synthetic routes, propelling the field towards large-scale preparation of COFs and their derivatives. This review will offer a holistic analysis and comparison of the spatial structure and synthesis techniques of COFs and their derivatives. The conventional methods of COF synthesis (i.e., ultrasonic chemical, microwave, and solvothermal) are discussed alongside the synthesis strategies of new COFs and their derivatives. Furthermore, the applications of COFs and their derived materials are demonstrated in air, water, and soil pollution management such as gas capture, catalytic conversion, adsorption, and pollutant removal. Finally, this review highlights the current challenges and prospects for large-scale preparation and application of new COFs and the derived materials. In line with the United Nations Sustainable Development Goals (SDGs) and the needs of digital-enabled technologies (AI and machine learning), this review will encompass the future technical trends for COFs in environmental pollution control.
Collapse
Affiliation(s)
- Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Runzhou Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Esther Akinlabi
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Hongyan Xia
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Muhammad Wakil Shahzad
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material of Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| |
Collapse
|
3
|
Han Y, Jin Y, Yang G, Ma X, Wang X, Qi D, Wang T, Jiang J. Covalent Organic Framework Controls the Aggregation of Metal Porphyrins for Enhanced Photocatalytic H 2 Evolution. Chem Asian J 2024:e202401342. [PMID: 39582073 DOI: 10.1002/asia.202401342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
Although different post modifications of covalent organic frameworks (COFs) have been developed for achieving hierarchical nanostructures and improved photocatalytic performance, the co-assemblies of COFs with small organic molecules were still rarely studied. Herein, COF/porphyrin composites, which were fabricated at room temperature, reveal that COFs surface can modulate the aggregation of metal porphyrins, which subsequently enhance the photocatalytic properties of COFs assemblies. Thus, the surface of COFs was decorated by porphyrins aggregations with varied thickness, dependent on the metal ions of porphyrins. Ni(II) meso-Tetra (4-carboxyphenyl) porphine (NiTCPP) formed discontinuous monolayer covering on COFs surface, while Pt(II) meso-Tetra (4-carboxyphenyl) porphine (PtTCPP) or Co(II) meso-Tetra (4-carboxyphenyl) porphine (CoTCPP) aggregated into multilayer coverage. Notably, even though NiTCPP did not show any advantages in terms of light absorption or HOMO/LUMO energy levels, COF/NiTCPP with the lowest porphyrin loading still exhibited the highest photocatalytic H2 evolution (29.71 mmol g-1 h-1), which is 2.5 times higher than that of COF/PtTCPP or COF/CoTCPP. These results open new possibilities for making highly efficient photocatalysts upon the co-assemblies of COFs with small organic molecules.
Collapse
Affiliation(s)
- Yuesheng Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Gengxiang Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaolin Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinxin Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
4
|
Chakrabortty P, Das A, Ghosh S, Mitra A, Paliwal KS, Mahalingam V, Islam MS, Yusuf K, Islam SM. Photocatalytic C(sp 3)-H and C(sp 2)-H Carboxylation of Amines with CO 2 Using a Sustainable Covalent Organic Framework/gC 3N 4 Composite. Ind Eng Chem Res 2024; 63:12413-12428. [DOI: 10.1021/acs.iecr.4c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Affiliation(s)
- Pekham Chakrabortty
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235 West Bengal, India
| | - Anjan Das
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Swarbhanu Ghosh
- Department of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada
| | - Antarip Mitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Khushboo S. Paliwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Kareem Yusuf
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sk. Manirul Islam
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235 West Bengal, India
| |
Collapse
|
5
|
Liu J, Zhang S, Long X, Jin X, Zhu Y, Duan S, Zhao J. Triazine and Fused Thiophene-Based Donor-Acceptor Type Semiconducting Conjugated Polymer for Enhanced Visible-Light-Induced H 2 Production. Molecules 2024; 29:2807. [PMID: 38930870 PMCID: PMC11206750 DOI: 10.3390/molecules29122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Conjugated polymers have attracted significant attention in the field of photocatalysis due to their exceptional properties, including versatile optimization, cost-effectiveness, and structure stability. Herein, two conjugated porous polymers, PhIN-CPP and ThIN-CPP, based on triazines, were meticulously designed and successfully synthesized using benzene and thiophene as building blocks. Based on UV diffuse reflection spectra, the photonic band gaps of PhIN-CPP and ThIN-CPP were calculated as 2.05 eV and 1.79 eV. The PhIN-CPP exhibited a high hydrogen evolution rate (HER) of 5359.92 μmol·g-1·h-1, which is 10 times higher than that of Thin-CPP (538.49 μmol·g-1·h-1). The remarkable disparity in the photocatalytic performance can be primarily ascribed to alterations in the band structure of the polymers, which includes its more stable benzene units, fluffier structure, larger specific surface area, most pronounced absorption occurring in the visible region and highly extended conjugation with a high density of electrons. The ΔEST values for PhIN-CPP and ThIN-CPP were calculated as 0.79 eV and 0.80 eV, respectively, based on DFT and TD-DFT calculations, which revealed that the incorporation of triazine units in the as-prepared CMPs could enhance the charge transfer via S1 ↔ T1 and was beneficial to the photocatalytic decomposition of H2O. This study presents a novel concept for developing a hybrid system for preparation of H2 by photocatalysis with effectiveness, sustainability, and economy.
Collapse
Affiliation(s)
- Jian Liu
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China;
- Institute of Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Shengling Zhang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China;
| | - Xinshu Long
- Department of Chemistry and Engineering, Heze University, Heze 274500, China; (X.L.); (X.J.); (Y.Z.)
| | - Xiaomin Jin
- Department of Chemistry and Engineering, Heze University, Heze 274500, China; (X.L.); (X.J.); (Y.Z.)
| | - Yangying Zhu
- Department of Chemistry and Engineering, Heze University, Heze 274500, China; (X.L.); (X.J.); (Y.Z.)
| | - Shengxia Duan
- Department of Chemistry and Engineering, Heze University, Heze 274500, China; (X.L.); (X.J.); (Y.Z.)
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Jinsheng Zhao
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China;
| |
Collapse
|
6
|
Chen W, Xue P, Wang Z, Xu T, Pan W, Huang J, Liu J, Tang M, Wang Z. A porous polyacrylonitrile (PAN)/covalent organic framework (COF) fibrous membrane photocatalyst for highly efficient and ultra-stable hydrogen evolution. J Colloid Interface Sci 2023; 652:341-349. [PMID: 37597415 DOI: 10.1016/j.jcis.2023.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
Photocatalytic water splitting has been regarded as one of the most promising technologies to generate hydrogen as an ideal energy carrier in the future. However, most of the experience for such process are derived from the researches based on the suspension powder photocatalysts under a stirring condition and a practical scaling application is urgently calling for the high-efficient panel reactors based on the membrane photocatalysts. Herein, we develop a new series of flexible and ultrastable membrane photocatalysts through a controllable growth of covalent organic framework (COF) photocatalysts on the polyacrylonitrile (PAN) electrospun fiber membrane. Multiple characterization techniques verify the successful anchoring of the COF-photocatalysts on the PAN fibers, forming a three-dimensional porous PAN/COF membrane photocatalyst with excellent light absorption ability, high specific surface area, and good hydrophily. As a result, the optimized PAN/COF membrane photocatalyst exhibits excellent hydrogen evolution rate up to 1.25 mmol g-1h-1 under visible-light irradiation without stirring, which is even higher than that of the corresponding suspension COF-powder photocatalyst with stirring. In particular, the PAN/COF membrane photocatalyst demonstrates a much more superior hydrogen evolution stability and also a much better recyclability. This study gives some experience for the practical scaling application of solar-driven water splitting.
Collapse
Affiliation(s)
- Wanbo Chen
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ping Xue
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zijing Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ting Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wenhao Pan
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jiming Huang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; School of Material and Chemical Engineering, Tongren University, Tongren 554300, China
| | - Junjie Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Mi Tang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zhengbang Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; School of Material and Chemical Engineering, Tongren University, Tongren 554300, China.
| |
Collapse
|
7
|
Chen Q, Wang Y, Luo G. Green and Rapid Synthesis of Acridine-Functionalized Covalent Organic Polymers for Photocatalysis by Combining Sonochemistry and Ion Induction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11731-11740. [PMID: 37555639 DOI: 10.1021/acs.langmuir.3c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Covalent organic polymers (COPs) are powerful candidates for achieving the visible-light-driven degradation of organic pollutants by virtue of structural designability, but their synthesis relies on harmful reagents and high temperatures, which weakens their associated green merits. Here, we report a novel strategy for combining sonochemistry with ion induction for the rapid preparation of acridine-functionalized COPs in green and mild aqueous solutions with tunable high yields of 80 to 90%. Photochemical studies reveal the ability of these COPs to harvest visible light and their sufficient conduction potentials for generating superoxide radicals. Furthermore, the photodegradation of methylene blue confirms the good photocatalytic activity and reusability of the zinc ion-based acridine-functionalized COP, which achieves 90.8% removal in 150 min and retains 82.5% activity after 5 reuse cycles, with a rate constant of up to 3.2 times that of commercial titanium dioxide nanoparticles. This strategy paves the way for the green, rapid, and mild synthesis of acridine-functionalized COPs, enabling visible light photocatalytic degradation for water treatment and energy conversion to advance in a thoroughly environmentally friendly and cost-effective manner.
Collapse
Affiliation(s)
- Qiang Chen
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yujun Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Fan C, Zhang L, Kong Y, Pang X, Gao Z, Wang S, Xing N, Wu H, Jiang Z. Solid-state synthesis of intrinsically proton-conducting covalent organic framework membrane. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
9
|
Lu Z, Wang Y, Li G. Covalent Organic Frameworks-Based Electrochemical Sensors for Food Safety Analysis. BIOSENSORS 2023; 13:291. [PMID: 36832057 PMCID: PMC9954712 DOI: 10.3390/bios13020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Food safety is a key issue in promoting human health and sustaining life. Food analysis is essential to prevent food components or contaminants causing foodborne-related illnesses to consumers. Electrochemical sensors have become a desirable method for food safety analysis due to their simple, accurate and rapid response. The low sensitivity and poor selectivity of electrochemical sensors working in complex food sample matrices can be overcome by coupling them with covalent organic frameworks (COFs). COFs are a kind of novel porous organic polymer formed by light elements, such as C, H, N and B, via covalent bonds. This review focuses on the recent progress in COF-based electrochemical sensors for food safety analysis. Firstly, the synthesis methods of COFs are summarized. Then, a discussion of the strategies is given to improve the electrochemistry performance of COFs. There follows a summary of the recently developed COF-based electrochemical sensors for the determination of food contaminants, including bisphenols, antibiotics, pesticides, heavy metal ions, fungal toxin and bacterium. Finally, the challenges and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhenyu Lu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingying Wang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Gong YN, Guan X, Jiang HL. Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Taylor D, Hu X, Wu CM, Tobin JM, Oriou Z, He J, Xu Z, Vilela F. Superprotonic conduction of intrinsically zwitterionic microporous polymers based on easy-to-make squaraine, croconaine and rhodizaine dyes. NANOSCALE ADVANCES 2022; 4:2922-2928. [PMID: 36132008 PMCID: PMC9416968 DOI: 10.1039/d2na00177b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Porous organic polymers (POPs) have been prepared via a novel metal free polycondensation between a tritopic indole-based monomer and squaric, croconic and rhodizonic acids. Each of the three POPs exhibited high BET surface areas (331-667 m2 g-1) and zwitterionic structures. Impedance measurements revealed that the intrinsic POPs were relatively weak proton conductors, with a positive correlation between the density of oxo-groups and the proton conduction. Doping the materials with LiCl vastly improved the proton conductivity up to a value of 0.54 S cm-1 at 90 °C and 90% relative humidity.
Collapse
Affiliation(s)
- Dominic Taylor
- School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Xuanhe Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Can-Min Wu
- School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - John M Tobin
- School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Zuzana Oriou
- Materials Innovation Factory and Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Zhengtao Xu
- Institute of Materials Research and Engineering 2 Fusionopolis Way, Innovis Building Singapore 138634
| | - Filipe Vilela
- School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| |
Collapse
|
12
|
Jin X, Lou Y, Zhang X, Wang B, Zhu Y, Gu X, Ding S, Ma J. Broccoli-liked silver phosphate nanoparticles supported on green nanofiber membrane for visible-light driven photodegradation towards water pollutants. NANOTECHNOLOGY 2022; 33:185703. [PMID: 35073520 DOI: 10.1088/1361-6528/ac4e42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In view of the practical application, it is imperative to develop efficient, exercisable, and visible light driven water pollution treatment materials. Herein, a high-efficiency green photocatalytic membrane for water pollution treatment is proposed and fabricated conveniently. Firstly, silver phosphate (Ag3PO4) nanoparticles with controlled morphology were prepared by simple liquid-phase precipitation method, and then a hierarchical structured Ag3PO4@polylactic acid (PLA) composite nanofiber membrane was prepared by electrospinning. Using electrospun PLA nanofiber membrane as a carrier of photocatalysts can significantly improve the dispersion of Ag3PO4nanoparticles, and increase the contact probability with pollutants and photocatalytic activity. The prepared PLA@Ag3PO4composite membrane was used to degrade methylene blue (MB) and tetracycline hydrochloride (TC) under visible light irradiation. The results showed that the removal ratio of pollutants on Ag3PO4@PLA composite nanofiber membrane was 94.0% for MB and 82.0% for TC, demonstrating an outstanding photocatalytic activity of composite membrane. Moreover, the PLA nanofiber membrane is a self-supported and biodegradable matrix. After five cycles, it can still achieve 88.0% of the initial photocatalytic degradation rate towards MB, showing excellent recyclability. Thus, this composite nanofiber membrane is a high-efficiency and environmental-friendly visible light driven water pollution treatment material that could be used in real applications.
Collapse
Affiliation(s)
- Xu Jin
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Yaoyuan Lou
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Xiuqin Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Bin Wang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Yanlong Zhu
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Xiaoxia Gu
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Shanshan Ding
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| | - Jiayu Ma
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
13
|
Chakraborty J, Nath I, Verpoort F. A physicochemical introspection of porous organic polymer photocatalysts for wastewater treatment. Chem Soc Rev 2022; 51:1124-1138. [DOI: 10.1039/d1cs00916h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A detailed physicochemical explanation for experimental observations is provided for POPs as powerful photocatalysts for organic transformations and wastewater decontamination.
Collapse
Affiliation(s)
- Jeet Chakraborty
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Centre for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Ipsita Nath
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Centre for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| |
Collapse
|
14
|
2D/2D S-scheme heterojunction with a covalent organic framework and g-C3N4 nanosheets for highly efficient photocatalytic H2 evolution. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
André V, Duarte MT, Gomes CSB, Sarraguça MC. Mechanochemistry in Portugal-A Step towards Sustainable Chemical Synthesis. Molecules 2021; 27:241. [PMID: 35011471 PMCID: PMC8746420 DOI: 10.3390/molecules27010241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
In Portugal, publications with mechanochemical methods date back to 2009, with the report on mechanochemical strategies for the synthesis of metallopharmaceuticals. Since then, mechanochemical applications have grown in Portugal, spanning several fields, mainly crystal engineering and supramolecular chemistry, catalysis, and organic and inorganic chemistry. The area with the most increased development is the synthesis of multicomponent crystal forms, with several groups synthesizing solvates, salts, and cocrystals in which the main objective was to improve physical properties of the active pharmaceutical ingredients. Recently, non-crystalline materials, such as ionic liquids and amorphous solid dispersions, have also been studied using mechanochemical methods. An area that is in expansion is the use of mechanochemical synthesis of bioinspired metal-organic frameworks with an emphasis in antibiotic coordination frameworks. The use of mechanochemistry for catalysis and organic and inorganic synthesis has also grown due to the synthetic advantages, ease of synthesis, scalability, sustainability, and, in the majority of cases, the superior properties of the synthesized materials. It can be easily concluded that mechanochemistry is expanding in Portugal in diverse research areas.
Collapse
Affiliation(s)
- Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Av. Rovisco Pais 1, 1049-003 Lisbon, Portugal
| | - M. Teresa Duarte
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Clara S. B. Gomes
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Mafalda C. Sarraguça
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|