1
|
Abdullah M, Younis M, Sohail MT, Wu S, Zhang X, Khan K, Asif M, Yan P. Recent Progress of 2D Materials-Based Photodetectors from UV to THz Waves: Principles, Materials, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402668. [PMID: 39235584 DOI: 10.1002/smll.202402668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Photodetectors are one of the most critical components for future optoelectronic systems and it undergoes significant advancements to meet the growing demands of diverse applications spanning the spectrum from ultraviolet (UV) to terahertz (THz). 2D materials are very attractive for photodetector applications because of their distinct optical and electrical properties. The atomic-thin structure, high carrier mobility, low van der Waals (vdWs) interaction between layers, relatively narrower bandgap engineered through engineering, and significant absorption coefficient significantly benefit the chip-scale production and integration of 2D materials-based photodetectors. The extremely sensitive detection at ambient temperature with ultra-fast capabilities is made possible with the adaptability of 2D materials. Here, the recent progress of photodetectors based on 2D materials, covering the spectrum from UV to THz is reported. In this report, the interaction of light with 2D materials is first deliberated on in terms of optical physics. Then, various mechanisms on which detectors work, important performance parameters, important and fruitful fabrication methods, fundamental optical properties of 2D materials, various types of 2D materials-based detectors, different strategies to improve performance, and important applications of photodetectors are discussed.
Collapse
Affiliation(s)
- Muhammad Abdullah
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Younis
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Tahir Sohail
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shifang Wu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiong Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Karim Khan
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Asif
- THz Technical Research Center of Shenzhen University, Shenzhen Key Laboratory of Micro-nano Photonic Information Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peiguang Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
2
|
Zhu Y, Feng B, Su Y, Li G, Liu Y, Hou Y, Zhang J, Li W, Zhong G, Yang C, Chen M. Strong Covalent Coupling in Vertically Layered SnSe 2/PTAA Heterojunctions Enabled High Performance Inorganic-Organic Hybrid Photodetectors. NANO LETTERS 2024; 24:6778-6787. [PMID: 38767965 DOI: 10.1021/acs.nanolett.4c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Controllable large-scale integration of two-dimensional (2D) materials with organic semiconductors and the realization of strong coupling between them still remain challenging. Herein, we demonstrate a wafer-scale, vertically layered SnSe2/PTAA heterojunction array with high light-trapping ability via a low-temperature molecular beam epitaxy method and a facile spin-coating process. Conductive probe atomic force microscopy (CP-AFM) measurements reveal strong rectification and photoresponse behavior in the individual SnSe2 nanosheet/PTAA heterojunction. Theoretical analysis demonstrates that vertically layered SnSe2/PTAA heterojunctions exhibit stronger C-Se covalent coupling than that of the conventional tiled type, which could facilitate more efficient charge transfer. Benefiting from these advantages, the SnSe2/PTAA heterojunction photodetectors with an optimized PTAA concentration show high performance, including a responsivity of 41.02 A/W, an external quantum efficiency of 1.31 × 104%, and high uniformity. The proposed approach for constructing large-scale 2D inorganic-organic heterostructures represents an effective route to fabricate high-performance broadband photodetectors for integrated optoelectronic systems.
Collapse
Affiliation(s)
- Yuanhao Zhu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Bohan Feng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yuhan Su
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guangyuan Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yingming Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuxin Hou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Jie Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenjie Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guohua Zhong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
3
|
Tan C, Yang Z, Wu H, Yang Y, Yang L, Wang Z. Electrically tunable interlayer recombination and tunneling behavior in WSe 2/MoS 2 heterostructure for broadband photodetector. NANOSCALE 2024; 16:6241-6248. [PMID: 38449431 DOI: 10.1039/d3nr06144b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Electrically tunable band structure and light-matter interaction are of great importance in designing novel devices and constructing high-integrated and high-performance photodetector systems in the future. However, tunable mechanisms on the layered semiconductor, especially the heterojunction, are still unclear. Herein, the WSe2/MoS2 phototransistor with dual-gated configuration is fabricated, and its electrical and photoelectrical conversion has been studied to show large tunability. It was found that conduction and rectification characteristics can be tuned by dual gates showing four states, p-i, p-n, i-n, and n-n, as a result of the charging and depletion of WSe2 and MoS2. The rectifying ratio can be modulated across a large range from 102.5 to 10-3.2. Its photoelectronic characteristics were observed to exhibit bipolar and wavelength-dependent behaviors. The interlayer recombination of charge carriers dominates the photoresponse of the device under the illumination of visible light, while it is dominated by interlayer tunneling under the illumination of near-infrared wavelengths. This bipolar photoresponse is associated with different states of band alignment, which can be switched by dual-gating modulation. Finally, by tuning the gate voltage, responsivities reach 27 445 A W-1 and 2827 A W-1 at wavelengths of 400 and 1010 nm at room temperature, respectively, which directly extends the response region from visible light to near-infrared.
Collapse
Affiliation(s)
- Chao Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhihao Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Haijuan Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yong Yang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Yuan H, Xu R, Ren J, Yang J, Wang S, Tian D, Fu Y, Li Q, Peng X, Wang X. Anisotropic charge transfer and gate tuning for p-SnS/n-MoS 2 vertical van der Waals diodes. NANOSCALE 2023; 15:15344-15351. [PMID: 37698246 DOI: 10.1039/d3nr03508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
2D-material-based van der Waals heterostructures (vdWhs) have shown great potential in next-generation multi-functional microelectronic devices. Thanks to their sharp interface and ultrathin thickness, 2D p-n junctions with high rectification properties have been established by combining p-type monochalcogenides with n-type transition metal dichalcogenides. However, the anisotropic rectification together with the charge transfer and gate effect has not been clarified. Herein, the electrical anisotropy of p-SnS/n-MoS2 diodes was studied. Optimum ideality factors within 1.08-1.18 have been achieved for the diode with 6.6 nm thick SnS on monolayer MoS2, and a high rectification ratio of 3.1 × 104 with strong in-plane anisotropy is observed along the zigzag direction of SnS. A strong gate effect on the anisotropic series resistance has been verified and an effective tuning over the transport length of the SnS channel can be established through adjustment of the current orientation and gate voltage. A thickness-dependent minority carrier transport mechanism has also been demonstrated for the reverse drain current, and Fowler-Nordheim tunneling and direct tunneling are proposed for the increase of the reverse current of the thicker and thinner diodes, respectively. This work will provide another strategy for high-performance diodes based on vdWhs via the control of the current orientation and the gate effect.
Collapse
Affiliation(s)
- Hui Yuan
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| | - Ruihan Xu
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| | - Jiale Ren
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| | - Jielin Yang
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| | - Shouyang Wang
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| | - Dongwen Tian
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| | - Yingshuang Fu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiaoniu Peng
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| | - Xina Wang
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
5
|
Zhang H, Wang Z, Chen J, Tan C, Yin S, Zhang H, Wang S, Qin Q, Li L. Type-I PtS 2/MoS 2 van der Waals heterojunctions with tunable photovoltaic effects and high photosensitivity. NANOSCALE 2022; 14:16130-16138. [PMID: 36239166 DOI: 10.1039/d2nr04231b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent advances in two-dimensional (2D) materials play an essential role in boosting modern electronics and optoelectronics. Thus far, transition metal dichalcogenides (TMDs) as emerging members of 2D materials, and the van der Waals heterostructures (vdWHs) based on TMDs have been extensively investigated owing to their prominent capabilities and unique crystal structures. In this work, an original vdWH composed of molybdenum disulfide (MoS2) and platinum disulfide (PtS2) was comprehensively studied as a field-effect transistor (FET) and photodetector. A gate-tunable rectifying behavior was obtained, stemming from the band design of PtS2/MoS2 vdWH. Upon 685 nm laser illumination, it also exhibited a superior photodetection performance with a distinctly high photoresponsivity of 403 A W-1, a comparable detectivity of 1.07 × 1011 Jones, and an excellent external quantum efficiency of 7.32 × 104%. More importantly, fast rise (24 ms) and decay (21 ms) times were obtained under 685 nm light illumination attributed to the unilateral depletion region structure. Further, the photovoltaic effect and photocurrent of the heterojunction could be modulated by a back gate voltage. All these results indicated that such 2D-TMD-based vdWHs provide a new idea for realizing high-performance electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Hui Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zihan Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Jiawang Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China.
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Chaoyang Tan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Shiqi Yin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Hanlin Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Shaotian Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Qinggang Qin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Liang Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China.
- University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
6
|
Lin Z, Zhu W, Zeng Y, Shu Y, Hu H, Chen W, Li J. Enhanced Photodetection Range from Visible to Shortwave Infrared Light by ReSe 2/MoTe 2 van der Waals Heterostructure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2664. [PMID: 35957096 PMCID: PMC9370303 DOI: 10.3390/nano12152664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Type II vertical heterojunction is a good solution for long-wavelength light detection. Here, we report a rhenium selenide/molybdenum telluride (n-ReSe2/p-MoTe2) photodetector for high-performance photodetection in the broadband spectral range of 405-2000 nm. Due to the low Schottky barrier contact of the ReSe2/MoTe2 heterojunction, the rectification ratio (RR) of ~102 at ±5 V is realized. Besides, the photodetector can obtain maximum responsivity (R = 1.05 A/W) and specific detectivity (D* = 6.66 × 1011 Jones) under the illumination of 655 nm incident light. When the incident wavelength is 1550-2000 nm, a photocurrent is generated due to the interlayer transition of carriers. This compact system can provide an opportunity to realize broadband infrared photodetection.
Collapse
Affiliation(s)
- Zhitao Lin
- School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China; (Z.L.); (Y.S.)
| | - Wenbiao Zhu
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China; (W.Z.); (Y.Z.); (H.H.)
| | - Yonghong Zeng
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China; (W.Z.); (Y.Z.); (H.H.)
| | - Yiqing Shu
- School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China; (Z.L.); (Y.S.)
| | - Haiguo Hu
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China; (W.Z.); (Y.Z.); (H.H.)
| | - Weicheng Chen
- Guangdong-HongKong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| | - Jianqing Li
- School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China; (Z.L.); (Y.S.)
| |
Collapse
|
7
|
Khan MA, Khan MF, Rehman S, Patil H, Dastgeer G, Ko BM, Eom J. The non-volatile electrostatic doping effect in MoTe 2 field-effect transistors controlled by hexagonal boron nitride and a metal gate. Sci Rep 2022; 12:12085. [PMID: 35840642 PMCID: PMC9287407 DOI: 10.1038/s41598-022-16298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022] Open
Abstract
The electrical and optical properties of transition metal dichalcogenides (TMDs) can be effectively modulated by tuning their Fermi levels. To develop a carrier-selectable optoelectronic device, we investigated intrinsically p-type MoTe2, which can be changed to n-type by charging a hexagonal boron nitride (h-BN) substrate through the application of a writing voltage using a metal gate under deep ultraviolet light. The n-type part of MoTe2 can be obtained locally using the metal gate pattern, whereas the other parts remain p-type. Furthermore, we can control the transition rate to n-type by applying a different writing voltage (i.e., − 2 to − 10 V), where the n-type characteristics become saturated beyond a certain writing voltage. Thus, MoTe2 was electrostatically doped by a charged h-BN substrate, and it was found that a thicker h-BN substrate was more efficiently photocharged than a thinner one. We also fabricated a p–n diode using a 0.8 nm-thick MoTe2 flake on a 167 nm-thick h-BN substrate, which showed a high rectification ratio of ~ 10−4. Our observations pave the way for expanding the application of TMD-based FETs to diode rectification devices, along with optoelectronic applications.
Collapse
Affiliation(s)
- Muhammad Asghar Khan
- Department of Physics and Astronomy, and Graphene Research Institute-Texas Photonics Center International Research Center (GRI-TPC IRC), Sejong University, Seoul, 05006, Korea
| | | | - Shania Rehman
- Department of Electrical Engineering, Sejong University, Seoul, 05006, Korea.,Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, Korea
| | - Harshada Patil
- Department of Electrical Engineering, Sejong University, Seoul, 05006, Korea.,Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, Korea
| | - Ghulam Dastgeer
- Department of Physics and Astronomy, and Graphene Research Institute-Texas Photonics Center International Research Center (GRI-TPC IRC), Sejong University, Seoul, 05006, Korea
| | - Byung Min Ko
- Department of Physics and Astronomy, and Graphene Research Institute-Texas Photonics Center International Research Center (GRI-TPC IRC), Sejong University, Seoul, 05006, Korea
| | - Jonghwa Eom
- Department of Physics and Astronomy, and Graphene Research Institute-Texas Photonics Center International Research Center (GRI-TPC IRC), Sejong University, Seoul, 05006, Korea.
| |
Collapse
|