1
|
Calvin JJ, DelRe C, Erdosy DP, Cho J, Hong H, Mason JA. Thermodynamics of Polyethylene Glycol Intrusion in Microporous Water. NANO LETTERS 2024; 24:15896-15903. [PMID: 39614131 DOI: 10.1021/acs.nanolett.4c05003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Polymers can be used to augment the properties of microporous materials, affording enhanced processability, stability, and compatibility. Manipulating polymers to target specific properties, however, requires detailed knowledge of how different polymers and microporous materials interact. Here, we report a study of the thermodynamics of polyethylene glycol (PEG) intrusion into a representative hydrophobic zeolite (silicalite-1) and metal-organic framework [ZIF-67; Co(2-methylimidazolate)2] in water, both of which can be formed into colloidally stable aqueous dispersions─termed "microporous water"─with dry, guest-accessible pore networks. Through a combination of O2 capacity measurements and isothermal titration calorimetry (ITC), we establish relationships between PEG intrusion behavior, polymer length, polymer end groups, and the structure of the microporous framework. In particular, we find that PEG intrusion is exothermic for silicalite-1 but endothermic for ZIF-67. Our results provide fundamental insights into polymer intrusion in microporous materials that should inform efforts to design composite solids and fluids with enhanced functionality.
Collapse
Affiliation(s)
- Jason J Calvin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States of America
| | - Christopher DelRe
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States of America
| | - Daniel P Erdosy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States of America
| | - Joy Cho
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States of America
| | - Hyukhun Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States of America
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States of America
| |
Collapse
|
2
|
Poryvaev AS, Efremov AA, Alimov DV, Smirnova KA, Polyukhov DM, Sagdeev RZ, Jacoutot S, Marque SRA, Fedin MV. Nanoscale solvent organization in metal-organic framework ZIF-8 probed by EPR of flexible β-phosphorylated nitroxides. Chem Sci 2024; 15:5268-5276. [PMID: 38577353 PMCID: PMC10988587 DOI: 10.1039/d3sc05724k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) draw increasing attention as nanoenvironments for chemical reactions, especially in the field of catalysis. Knowing the specifics of MOF cavities is decisive in many of these cases; yet, obtaining them in situ remains very challenging. We report the first direct assessment of the apparent polarity and solvent organization inside MOF cavities using a dedicated structurally flexible spin probe. A stable β-phosphorylated nitroxide radical was incorporated into the cavities of a prospective MOF ZIF-8 in trace amounts. The spectroscopic properties of this probe depend on local polarity, structuredness, stiffness and cohesive pressure and can be precisely monitored by Electron Paramagnetic Resonance (EPR) spectroscopy. Using this approach, we have demonstrated experimentally that the cavities of bare ZIF-8 are sensed by guest molecules as highly non-polar inside. When various alcohols fill the cavities, remarkable self-organization of solvent molecules is observed leading to a higher apparent polarity in MOFs compared to the corresponding bulk alcohols. Accounting for such nanoorganization phenomena can be crucial for optimization of chemical reactions in MOFs, and the proposed methodology provides unique routes to study MOF cavities inside in situ, thus aiding in their various applications.
Collapse
Affiliation(s)
- Artem S Poryvaev
- International Tomography Center SB RAS Novosibirsk 630090 Russia
| | - Aleksandr A Efremov
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Dmitry V Alimov
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Kristina A Smirnova
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | | | - Renad Z Sagdeev
- International Tomography Center SB RAS Novosibirsk 630090 Russia
| | - Samuel Jacoutot
- Aix Marseille University, CNRS, UMR Avenue Escadrille Normandie-Niemen 7273 Marseille 13397 CEDEX 20 France
| | - Sylvain R A Marque
- Aix Marseille University, CNRS, UMR Avenue Escadrille Normandie-Niemen 7273 Marseille 13397 CEDEX 20 France
| | - Matvey V Fedin
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| |
Collapse
|
3
|
Rahmani M, Matos CMO, Wang SQ, Bezrukov AA, Eaby AC, Sensharma D, Hjiej-Andaloussi Y, Vandichel M, Zaworotko MJ. Highly Selective p-Xylene Separation from Mixtures of C8 Aromatics by a Nonporous Molecular Apohost. J Am Chem Soc 2023; 145:27316-27324. [PMID: 38055597 PMCID: PMC10739993 DOI: 10.1021/jacs.3c07198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
High and increasing production of separation of C8 aromatic isomers demands the development of purification methods that are efficient, scalable, and inexpensive, especially for p-xylene, PX, the largest volume C8 commodity. Herein, we report that 4-(1H-1,2,4-triazol-1-yl)-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (TPBD), a molecular compound that can be prepared and scaled up via solid-state synthesis, exhibits exceptional PX selectivity over each of the other C8 isomers, o-xylene (OX), m-xylene (MX), and ethylbenzene (EB). The apohost or α form of TPBD was found to exhibit conformational polymorphism in the solid state enabled by rotation of its triazole and benzene rings. TPBD-αI and TPBD-αII are nonporous polymorphs that transformed to the same PX inclusion compound, TPBD-PX, upon contact with liquid PX. TPBD enabled highly selective capture of PX, as established by competitive slurry experiments involving various molar ratios in binary, ternary, and quaternary mixtures of C8 aromatics. Binary selectivity values for PX as determined by 1H NMR spectroscopy and gas chromatography ranged from 22.4 to 108.4, setting new benchmarks for both PX/MX (70.3) and PX/EB (59.9) selectivity as well as close to benchmark selectivity for PX/OX (108.4). To our knowledge, TPBD is the first material of any class to exhibit such high across-the-board PX selectivity from quaternary mixtures of C8 aromatics under ambient conditions. Crystallographic and computational studies provide structural insight into the PX binding site in TPBD-PX, whereas thermal stability and capture kinetics were determined by variable-temperature powder X-ray diffraction and slurry tests, respectively. That TPBD offers benchmark PX selectivity and facile recyclability makes it a prototypal molecular compound for PX purification or capture under ambient conditions.
Collapse
Affiliation(s)
- Maryam Rahmani
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Catiúcia
R. M. O. Matos
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Shi-Qiang Wang
- Institute
of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, 138634 Singapore
| | - Andrey A. Bezrukov
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Alan C. Eaby
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Debobroto Sensharma
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Yassin Hjiej-Andaloussi
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Matthias Vandichel
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Michael J. Zaworotko
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| |
Collapse
|
4
|
Ganesan A, Metz PC, Thyagarajan R, Chang Y, Purdy SC, Jayachandrababu KC, Page K, Sholl DS, Nair S. Structural and Adsorption Properties of ZIF-8-7 Hybrid Materials Synthesized by Acid Gas-Assisted and De Novo Routes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:23956-23965. [PMID: 38115817 PMCID: PMC10726363 DOI: 10.1021/acs.jpcc.3c06334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
The tuning of micropore environments in zeolitic imidazolate frameworks (ZIFs) by mixed-linker synthesis has the potential for enabling new molecular separation properties. However, de novo synthesis of mixed-linker (hybrid) ZIFs is often challenging due to the disparate chemical properties of the different linkers. Here, we elucidate the structure and properties of an unconventional ZIF-8-7 hybrid material synthesized via a controlled-acid-gas-assisted degradation and reconstruction (solvent-assisted crystal redemption, SACRed) strategy. Selective insertion of benzimidazole (ZIF-7 linker) into ZIF-8 using SACRed is used as a facile method to generate a ZIF-8-7 hybrid material that is otherwise difficult to synthesize by de novo methods. Detailed crystal structure and textural characterizations clarify the significant differences in the microstructure of the SACRed-derived ZIF-8-7 hybrid material relative to a de novo synthesized hybrid of the same overall linker composition as well as the parent ZIF-8 material. Unary and binary adsorption measurements reveal the tunability of adsorption characteristics as well as the prevalence of nonideal cooperative mixture adsorption effects that lead to large deviations from predictions made with ideal adsorbed solution theory.
Collapse
Affiliation(s)
- Arvind Ganesan
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Peter C. Metz
- Materials
Science and Engineering Department, University
of Tennessee, Knoxville, Tennessee 37996, United States
| | - Raghuram Thyagarajan
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yuchen Chang
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stephen C. Purdy
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Krishna C. Jayachandrababu
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Katharine Page
- Materials
Science and Engineering Department, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - David S. Sholl
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Oak
Ridge National Laboratory, Oak
Ridge, Tennessee 37830, United States
| | - Sankar Nair
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
DelRe C, Hong H, Wenny MB, Erdosy DP, Cho J, Lee B, Mason JA. Design Principles for Using Amphiphilic Polymers To Create Microporous Water. J Am Chem Soc 2023; 145:19982-19988. [PMID: 37655897 DOI: 10.1021/jacs.3c06627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Aqueous dispersions of microporous nanocrystals with dry, gas-accessible pores─referred to as "microporous water"─enable high densities of gas molecules to be transported through water. For many applications of microporous water, generalizable strategies are required to functionalize the external surface of microporous particles to control their dispersibility, stability, and interactions with other solution-phase components─including catalysts, proteins, and cells─while retaining as much of their internal pore volume as possible. Here, we establish design principles for the noncovalent surface functionalization of hydrophobic metal-organic frameworks with amphiphilic polymers that render the particles dispersible in water and enhance their hydrolytic stability. Specifically, we show that block co-polymers with persistence lengths that exceed the micropore aperture size of zeolitic imidazolate frameworks (ZIFs) can dramatically enhance ZIF particle dispersibility and stability while preserving porosity and >80% of the theoretical O2 carrying capacity. Moreover, enhancements in hydrolytic stability are greatest when the polymer can form strong bonds to exposed metal sites on the external particle surface. More broadly, our insights provide guidelines for controlling the interface between polymers and metal-organic framework particles in aqueous environments to augment the properties of microporous water.
Collapse
Affiliation(s)
- Christopher DelRe
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Hyukhun Hong
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Malia B Wenny
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel P Erdosy
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Joy Cho
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
6
|
Mor J, Nelliyil RB, Sharma SK. Fine-Tuning of the Pore Aperture and Framework Flexibility of Mixed-Metal (Zn/Co) Zeolitic Imidazolate Framework-8: An In Situ Positron Annihilation Lifetime Spectroscopy Study under CO 2 Gas Pressure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10056-10065. [PMID: 37436156 DOI: 10.1021/acs.langmuir.3c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The mixed-metal (Zn/Co) strategy has been used to enhance the gas separation selectivity of zeolitic imidazolate framework-8 (ZIF-8)-based membranes. The enhancement in selectivity has been attributed to possible modifications in the grain boundary structure, pore architecture, and flexibility of the frameworks. In the present study, we used in situ positron annihilation lifetime spectroscopy (PALS) under varying CO2 pressure to investigate the tuning of the pore architecture and framework flexibility of mixed-metal (Zn/Co) ZIF-8 frameworks with varying Co contents. The random distribution of Zn and Co metal nodes within the highly crystalline frameworks having an SOD topology was established using electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The inherent aperture as well as cavity size of the frameworks, and the pore interconnectivity to the outer surface, were observed to vary with the Co content in ZIF-8 due to the random distribution of Zn and Co metal nodes in the frameworks. The aperture size is reduced with the incorporation of an additional metal (Zn or Co) in ZIF-67 or ZIF-8, respectively. The aperture size remains the smallest for a lower Co content (∼0.20) in ZIF-8. The framework flexibility determined by in situ PALS measurements under CO2 pressure continuously reduces with increasing Co content in ZIF-8. A smaller aperture size as well as low flexibility of ZIF-8 with a low Co content is seen to be directly correlated to a higher separation selectivity of membranes prepared with this mixed-metal composition.
Collapse
Affiliation(s)
- Jaideep Mor
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Renjith B Nelliyil
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sandeep Kumar Sharma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
7
|
Demakov PA. Properties of Aliphatic Ligand-Based Metal-Organic Frameworks. Polymers (Basel) 2023; 15:2891. [PMID: 37447535 DOI: 10.3390/polym15132891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Ligands with a purely aliphatic backbone are receiving rising attention in the chemistry of coordination polymers and metal-organic frameworks. Such unique features inherent to the aliphatic bridges as increased conformational freedom, non-polarizable core, and low light absorption provide rare and valuable properties for their derived MOFs. Applications of such compounds in stimuli-responsive materials, gas, and vapor adsorbents with high and unusual selectivity, light-emitting, and optical materials have extensively emerged in recent years. These properties, as well as other specific features of aliphatic-based metal-organic frameworks are summarized and analyzed in this short critical review. Advanced characterization techniques, which have been applied in the reported works to obtain important data on the crystal and molecular structures, dynamics, and functionalities, are also reviewed within a general discussion. In total, 132 references are included.
Collapse
Affiliation(s)
- Pavel A Demakov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Akad. Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Zeng H, Xie XJ, Wang Y, Luo D, Wei RJ, Lu W, Li D. Spatial disposition of square-planar mononuclear nodes in metal-organic frameworks for C 2H 2/CO 2 separation. Chem Sci 2022; 13:12876-12882. [PMID: 36519039 PMCID: PMC9645388 DOI: 10.1039/d2sc04324f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/16/2022] [Indexed: 01/25/2024] Open
Abstract
The efficient separation of acetylene (C2H2) from its mixture with carbon dioxide (CO2) remains a challenging industrial process due to their close molecular sizes/shapes and similar physical properties. Herein, we report a microporous metal-organic framework (JNU-4) with square-planar mononuclear copper(ii) centers as nodes and tetrahedral organic linkers as spacers, allowing for two accessible binding sites per metal center for C2H2 molecules. Consequently, JNU-4 exhibits excellent C2H2 adsorption capacity, particularly at 298 K and 0.5 bar (200 cm3 g-1). Detailed computational studies confirm that C2H2 molecules are indeed predominantly located in close proximity to the square-planar copper centers on both sides. Breakthrough experiments demonstrate that JNU-4 is capable of efficiently separating C2H2 from a 50 : 50 C2H2/CO2 mixture over a broad range of flow rates, affording by far the largest C2H2 capture capacity (160 cm3 g-1) and fuel-grade C2H2 production (105 cm3 g-1, ≥98% purity) upon desorption. Simply by maximizing accessible open metal sites on mononuclear metal centers, this work presents a promising strategy to improve the C2H2 adsorption capacity and address the challenging C2H2/CO2 separation.
Collapse
Affiliation(s)
- Heng Zeng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Xiao-Jing Xie
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Ying Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Rong-Jia Wei
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
9
|
Li X, Bian H, Huang W, Yan B, Wang X, Zhu B. A review on anion-pillared metal–organic frameworks (APMOFs) and their composites with the balance of adsorption capacity and separation selectivity for efficient gas separation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Borisov SV, Pervukhina NV, Magarill SA. ON THE STABILITY OF THE [Li2Zn2(bpy)(ndc)3] STRUCTURE WITH A METAL-ORGANIC FRAMEWORK. J STRUCT CHEM+ 2022. [DOI: 10.1134/s002247662210016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Rostami J, Benselfelt T, Maddalena L, Avci C, Sellman FA, Cinar Ciftci G, Larsson PA, Carosio F, Akhtar F, Tian W, Wågberg L. Shaping 90 wt% NanoMOFs into Robust Multifunctional Aerogels Using Tailored Bio-Based Nanofibrils. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204800. [PMID: 35906189 DOI: 10.1002/adma.202204800] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) are hybrid porous crystalline networks with tunable chemical and structural properties. However, their excellent potential is limited in practical applications by their hard-to-shape powder form, making it challenging to assemble MOFs into macroscopic composites with mechanical integrity. While a binder matrix enables hybrid materials, such materials have a limited MOF content and thus limited functionality. To overcome this challenge, nanoMOFs are combined with tailored same-charge high-aspect-ratio cellulose nanofibrils (CNFs) to manufacture robust, wet-stable, and multifunctional MOF-based aerogels with 90 wt% nanoMOF loading. The porous aerogel architectures show excellent potential for practical applications such as efficient water purification, CO2 and CH4 gas adsorption and separation, and fire-safe insulation. Moreover, a one-step carbonization process enables these aerogels as effective structural energy-storage electrodes. This work exhibits the unique ability of high-aspect-ratio CNFs to bind large amounts of nanoMOFs in structured materials with outstanding mechanical integrity-a quality that is preserved even after carbonization. The demonstrated process is simple and fully discloses the intrinsic potential of the nanoMOFs, resulting in synergetic properties not found in the components alone, thus paving the way for MOFs in macroscopic multifunctional composites.
Collapse
Affiliation(s)
- Jowan Rostami
- Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, Stockholm, 11428, Sweden
| | - Tobias Benselfelt
- Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, Stockholm, 11428, Sweden
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lorenza Maddalena
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino-Alessandria Campus, Viale Teresa Michel 5, Alessandria, 15121, Italy
| | - Civan Avci
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Paris, F-75005, France
| | - Farhiya Alex Sellman
- Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, Stockholm, 11428, Sweden
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center (WWSC), KTH Royal Institute of Technology, Stockholm, 11428, Sweden
| | - Goksu Cinar Ciftci
- Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, Stockholm, 11428, Sweden
- Material and Surface Design, RISE Research Institutes of Sweden, Stockholm, 11486, Sweden
| | - Per A Larsson
- Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, Stockholm, 11428, Sweden
| | - Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino-Alessandria Campus, Viale Teresa Michel 5, Alessandria, 15121, Italy
| | - Farid Akhtar
- Division of Materials Science, Luleå University of Technology, Luleå, 97187, Sweden
| | - Weiqian Tian
- Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, Stockholm, 11428, Sweden
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, Division of Fibre Technology, KTH Royal Institute of Technology, Stockholm, 11428, Sweden
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center (WWSC), KTH Royal Institute of Technology, Stockholm, 11428, Sweden
| |
Collapse
|
12
|
A gating ultramicroporous metal-organic framework showing high adsorption selectivity, capacity and rate for xylene separation. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Timofeeva M, Lukoyanov I, Panchenko V, Shefer K, Mel'gunov M, Bhadra B, Jhung S. Tuning the catalytic properties for cycloaddition of CO2 to propylene oxide on zeolitic-imidazolate frameworks through variation of structure and chemical composition. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Li L, Guo L, Olson DH, Xian S, Zhang Z, Yang Q, Wu K, Yang Y, Bao Z, Ren Q, Li J. Discrimination of xylene isomers in a stacked coordination polymer. Science 2022; 377:335-339. [DOI: 10.1126/science.abj7659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The separation and purification of xylene isomers is an industrially important but challenging process. Developing highly efficient adsorbents is crucial for the implementation of simulated moving bed technology for industrial separation of these isomers. Herein, we report a stacked one-dimensional coordination polymer {[Mn(dhbq)(H
2
O)
2
], H
2
dhbq = 2,5-dihydroxy-1,4-benzoquinone} that exhibits an ideal molecular recognition and sieving of xylene isomers. Its distinct temperature-adsorbate–dependent adsorption behavior enables full separation of
p
-,
m
-, and
o
-xylene isomers in both vapor and liquid phases. The delicate stimuli-responsive swelling of the structure imparts this porous material with exceptionally high flexibility and stability, well-balanced adsorption capacity, high selectivity, and fast kinetics at conditions mimicking industrial settings. This study may offer an alternative approach for energy-efficient and adsorption-based industrial xylene separation and purification processes.
Collapse
Affiliation(s)
- Liangying Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Lidong Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - David H. Olson
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shikai Xian
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Kaiyi Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, P. R. China
| |
Collapse
|
15
|
Efremov AA, Poryvaev AS, Polyukhov DM, Gromilov SA, Fedin MV. Oxidation of benzyl alcohol in the copper-doped ZIF-8 metal-organic framework with encapsulated nitroxyl radical. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Agafonov MA, Alexandrov EV, Artyukhova NA, Bekmukhamedov GE, Blatov VA, Butova VV, Gayfulin YM, Garibyan AA, Gafurov ZN, Gorbunova YG, Gordeeva LG, Gruzdev MS, Gusev AN, Denisov GL, Dybtsev DN, Enakieva YY, Kagilev AA, Kantyukov AO, Kiskin MA, Kovalenko KA, Kolker AM, Kolokolov DI, Litvinova YM, Lysova AA, Maksimchuk NV, Mironov YV, Nelyubina YV, Novikov VV, Ovcharenko VI, Piskunov AV, Polyukhov DM, Polyakov VA, Ponomareva VG, Poryvaev AS, Romanenko GV, Soldatov AV, Solovyeva MV, Stepanov AG, Terekhova IV, Trofimova OY, Fedin VP, Fedin MV, Kholdeeva OA, Tsivadze AY, Chervonova UV, Cherevko AI, Shul′gin VF, Shutova ES, Yakhvarov DG. METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622050018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Efficient adsorption separation of xylene isomers in zeolitic imidazolate framework-67@MCF hybrid materials. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|