1
|
Liu L, Zhang Q, Wang C, Guo H, Mukwaya V, Chen R, Xu Y, Wei X, Chen X, Zhang S, Zhou M, Dou H. Single-Cell Diagnosis of Cancer Drug Resistance through the Differential Endocytosis of Nanoparticles between Drug-Resistant and Drug-Sensitive Cancer Cells. ACS NANO 2023; 17:19372-19386. [PMID: 37781914 DOI: 10.1021/acsnano.3c07030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Single-cell diagnosis of cancer drug resistance is highly relevant for cancer treatment, as it can be used to identify the subpopulations of drug-resistant cancer cells, reveal the sensitivity of cancer cells to treatment, and monitor the progress of cancer drug resistance. However, simple and effective methods for cancer drug resistance detection at the single-cell level are still lacking in laboratory and clinical studies. Inspired by the fact that nanoparticles with diverse physicochemical properties would generate distinct and specific interactions with drug-resistant and drug-sensitive cancer cells, which have distinctive molecular signatures, here, we have synthesized a library of fluorescent nanoparticles with various sizes, surface charges, and compositions (SiO2 nanoparticles (SNPs), organic PS-co-PAA nanoparticles (ONPs), and ZIF-8 nanoparticles (ZNPs)), thus demonstrating that the composition has a critical influence on the interaction of nanoparticles with drug-resistant cancer cells. Furthermore, the clathrin/caveolae-independent endocytosis of ZNPs together with the P-glycoprotein-related decreased cell membrane fluidity resulted in a lower cellular accumulation of ZNPs in drug-resistant cancer cells, consequently causing the distinct cellular accumulation of ZNPs between the drug-resistant and drug-sensitive cancer cells. This difference was further quantified by detecting the fluorescence signals generated by the accumulation of nanoparticles at the single-cell level via flow cytometry. Our findings provide another insight into the nanoparticle-cell interactions and offer a promising platform for the diagnosis of cancer drug resistance of various cancer cells and clinical cancer samples at the single-cell level.
Collapse
Affiliation(s)
- Lingshan Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| | - Qiurui Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Chenglong Wang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| | - Heze Guo
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| | - Vincent Mukwaya
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| | - Rong Chen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yichun Xu
- Shanghai Biochip Co. Ltd. and National Engineering Center for Biochip at Shanghai, 151 Libing Road, Shanghai 201203, China
| | - Xiaohui Wei
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
2
|
Liu L, Cheng M, Guo H, Guan Q, You J, Dou H. Multidimensional Quantitative Measurement of Cancer Chemoresistance through Differential ZIF-8 Nanoparticle Cellular Retention. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51798-51807. [PMID: 36367515 DOI: 10.1021/acsami.2c17692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemoresistance of cancer cells is conventionally quantified by half-maximal inhibitory concentration (IC50) or multidrug resistance gene 1 (MDR1) values, but these metrics can only reflect the overall drug resistance level of a cancer cell line. Meanwhile, the multidimensional evaluation of both the heterogeneity in a cell line and the drug resistance degree of each cell still presents a daunting challenge. We report here that the cellular heterogeneity, cellular cross contamination, and the proportion of chemoresistant cancer cells can be visualized via flow cytometry through the differential cellular retention of fluorescent ZIF-8 nanoparticles. In addition, we show that the degree of drug resistance exhibited by each cell subpopulation can be quantified by differing fluorescence of the drug-resistant and drug-sensitive cells in the corresponding flow cytometry profile, and the quantified metric S is highly consistent with the MDR1 expression results. Importantly, this novel strategy is applicable to various cancer cell lines, thus demonstrating a universal diagnosis platform for multidimensional, quantitative, and highly efficient diagnosis of cancer chemoresistance.
Collapse
Affiliation(s)
- Lingshan Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai201203, China
| | - Meng Cheng
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
| | - Heze Guo
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai201203, China
| | - Qixiao Guan
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai201203, China
| | - Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai201203, China
| |
Collapse
|
3
|
Sugai H, Tomita S, Ishihara S, Shiraki K, Kurita R. Damage-free evaluation of cultured cells based on multivariate analysis with a single-polymer probe. Chem Commun (Camb) 2022; 58:11083-11086. [PMID: 36124543 DOI: 10.1039/d2cc03308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a pattern-recognition-based sensor that targets cell-derived components in culture media and evaluates cultured cells without damaging them. An array sensor made of a single-polymer probe was employed to obtain fluorescence response patterns of the analyte media, allowing successful identification of the type and state of the cells via multivariate analysis.
Collapse
Affiliation(s)
- Hiroka Sugai
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan. .,Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Shunsuke Tomita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Sayaka Ishihara
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| | - Ryoji Kurita
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan. .,Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|