1
|
Miao S, Sun J, Li Y, Zhang Q, Chen H, Gao F. Engineered DR/NIR dual-emission carbonized polymer dots for simultaneous tracking of lipid droplets and lysosomes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125598. [PMID: 39706069 DOI: 10.1016/j.saa.2024.125598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Developing near-infrared fluorescent probes for simultaneous tracking of lipid droplets (LDs) and lysosomes is highly desirable for studying cell metabolism. In this work, deep-red/near-infrared dual-emission carbonized polymer dots (DN-CPDs) were prepared for ratiometric monitoring of the intracellular polarity. Detailed structural analysis revealed that the deep-red emission and near-infrared peak of DN-CPDs originate from the molecular state and surface state, respectively. The surface-state emission was derived from the intraparticle charge-transfer (ICT) effect of the donor-bridge-acceptor (D-π-A) structure of DN-CPDs. The obtained DN-CPDs exhibited excellent dual-labeling ability, large Stokes shifts, ratiometric polarity sensitivity, high selectivity, and satisfactory photostability. Moreover, with the polarity distinction between LDs and lysosomes, DN-CPDs nanoprobes were successfully used to observe the dynamic changes of the two aforementioned organelles during starvation-induced lipophagy and drug-induced lipophagy inhibition processes. This work not only provides a useful tool for LD-lysosome related studies but is also valuable for the preparation of CPDs with long wavelength emission.
Collapse
Affiliation(s)
- Shan Miao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| | - Ying Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Qiang Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, PR China
| | - Hongqi Chen
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| |
Collapse
|
2
|
Hao Y, Wang Z, Wang H, Dong W, Liu Y, Hu Q, Shuang S, Dong C, Guo Y, Gong X. Rational design of carbon dot nanozymes for ratiometric dual-signal and smartphone-assisted visual detection of nitrite in food matrices. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136156. [PMID: 39413512 DOI: 10.1016/j.jhazmat.2024.136156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Developing reliable nitrite (NO2-) sensors is essential for food safety and reducing health risks from NO2- exposure. In this study, we strategically designed nitrogen-doped carbon dot (N-CD) nanozymes to establish an accessible dual-signal ratiometric sensing system for detecting NO2- in food matrices. This system utilizes the photoluminescence and enzyme-like properties of N-CD nanozymes combined with NO2--triggered diazotization reactions of substrates such as o-phenylenediamine (OPD) or 3,3',5,5'-tetramethylbenzidine (TMB). The resulting N-CD/OPD and N-CD/TMB composites provide dual-mode detection-fluorescence and colorimetric-with high selectivity for NO2- and excellent resistance to interference. These sensors exhibit clear color changes under both ultraviolet and visible light, and can be combined with smartphones for visual, on-site detection of NO2-. By incorporating a ratiometric strategy, dual-signal output, and smartphone compatibility, our system achieved a low detection limit (≤ 1.92 μM) and satisfactory recovery rates (85.6-115 %) in environmental water and food samples. This highlights the potential of smartphone-assisted sensors for environmental monitoring and food safety applications. Our carbon dot-based platform offers a practical and effective solution for on-site NO2- detection, contributing valuable insights to the field.
Collapse
Affiliation(s)
- Yumin Hao
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Zihan Wang
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Huiping Wang
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Wenjuan Dong
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Yang Liu
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Qin Hu
- College of Food Chemistry and Engineering, Yangzhou University, Yangzhou 225001, PR China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Yujing Guo
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| | - Xiaojuan Gong
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
3
|
Aggarwal M, Sharda D, Srivastava S, Kotnees DK, Choudhury D, Das P. Carbonized Polymer Dot-Tannic Acid Nanoglue: Tissue Reinforcement with Concurrent Fluorescent Tracking, Insulin Delivery, and Reactive Oxygen Species Regulation for Normal and Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405531. [PMID: 39148199 PMCID: PMC11579962 DOI: 10.1002/smll.202405531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Nanotizing biosealant components offer a multitude of chemical functionalities for superior adhesion-cohesion, delivering unique properties for comprehensive wound healing that are otherwise impossible to achieve using commercial variants. For the first time, a two-step controlled hydrothermal pyrolysis is reported to nanotize dopamine, phloroglucinol, and glutaraldehyde into carbon dot (CD) to be subsequently converted into carbonized polymer dot (CPD) with gelatin as a co-substrate. Chemical crosslinking of CD with gelatin through Schiff base formation before the second pyrolysis step ensures a complex yet porous polymeric network. The retention of chemical functionalities indigenous to CD substrates and gelatin along with the preservation of CD photoluminescence in CPD for optical tracking is achieved. A unique nanoformulation is created with the CPD through tannic acid (TA) grafting evolving CPD-TA nanoglue demonstrating ≈1.32 MPa strength in lap shear tests conducted on porcine skin, surpassing traditional bioadhesives. CPD-TA nanoglue uploaded insulin as chosen cargo disbursal at the wound site for healing normal and in vitro diabetic wound models using HEKa cells with extraordinary biocompatibility. Most importantly, CPD-TA can generate reactive oxygen species (ROS) and scavenge simultaneously under ambient conditions (23 W white LED or dark) for on-demand sterilization or aiding wound recovery through ROS scavenging.
Collapse
Affiliation(s)
- Maansi Aggarwal
- Department of ChemistryIndian Institute of Technology PatnaPatnaBihar801103India
| | - Deepinder Sharda
- Department of Chemistry and BiochemistryThapar Institute of Engineering and Technology (TIET)PatialaPunjab147004India
| | - Shruti Srivastava
- Department of ChemistryIndian Institute of Technology PatnaPatnaBihar801103India
| | - Dinesh Kumar Kotnees
- Department of Metallurgical and Materials EngineeringIndian Institute of Technology PatnaPatnaBihar801103India
| | - Diptiman Choudhury
- Department of Chemistry and BiochemistryThapar Institute of Engineering and Technology (TIET)PatialaPunjab147004India
- Center of Excellence in Emerging Materials (CEEMS)Thapar Institute of Engineering and TechnologyPatialaPunjab147004India
| | - Prolay Das
- Department of ChemistryIndian Institute of Technology PatnaPatnaBihar801103India
| |
Collapse
|
4
|
Miao C, Wang Q, Yang S, Tang Y, Liu X, Lu S. Hydrothermal route upcycling surgical masks into dual-emitting carbon dots as ratiometric fluorescent probe for Cr (VI) and corrosion inhibitor in saline solution. Talanta 2024; 275:126070. [PMID: 38678920 DOI: 10.1016/j.talanta.2024.126070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024]
Abstract
Exploration effective route to convert plastic waste into valuable carbon dots with bifunction of metal fluorescence monitoring and corrosion protection in seawater is promising. Herein, using "white-pollution" polypropylene surgical masks as a single precursor, dual-emitting carbon dots (CDs) with excellent ratiometric fluorescent sensitivity and corrosion inhibitor efficiency were fabricated with high yield (∼100 %) by a one-pot in situ acid oxidation hydrothermal strategy without post-treatment and organic solvents. Chemical, structural, morphological, optical properties and the Cr (VI) detection and Cu inhibition mechanism of the synthesized CDs had been systematically studied. Furthermore, a dual-response-OFF proportional fluorescent probe had been developed for the detection of the analyte Cr (VI) with a low detection limit of 24 nM. Additionally, the corrosion inhibition efficiency of the prepared CDs reached approximately 94.01 % for Cu substrate in 3.5 wt% NaCl electrolyte under a CDs concentration of 200 mg/L, which is higher than that of most previous reports.
Collapse
Affiliation(s)
- Caiqin Miao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Qun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Shuang Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yihui Tang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiyan Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Songtao Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
5
|
Mei X, Du Q, Li J, Dong C. Sensitive detections for three kinds of vitamin B in aqueous solution and on test paper by fluorescent dual-emission carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124230. [PMID: 38581773 DOI: 10.1016/j.saa.2024.124230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Although a few of fluorescent probes based on carbon dots (CDs) for vitamin B (VB) determination have been emerged, none of them can realize the detection of different kinds of VB. In this paper, nitrogen, chlorine co-doped dual-emission CDs (N, Cl-CDs) with emissions at 404 nm and 595 nm have been easily synthesized. VB2, VB9 and VB12 can all induce obvious fluorescence turn-off response toward the N, Cl-CDs. Based on that, three types of VBs are quantitatively and sensitively evaluated in aqueous solution with wide concentration ranges of 14.9-135.0 μM, 34.7-89.8 μM and 29.8-79.8 μM, respectively. Importantly, visual semiquantitative detection of VBs on a test strip are also proposed. Moreover, the current N, Cl-CDs have been successfully applied to the detection of VBs in real samples. The N, Cl-CDs are sensitively multifunctional sensors for three kinds of VBs in aqueous solution and the visual semiquantitative detection by test paper assay is simple, portable and inexpensive.
Collapse
Affiliation(s)
- Xiping Mei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Qian Du
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Junfen Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
6
|
Li Y, Lu H, Xu S. The construction of dual-emissive ratiometric fluorescent probes based on fluorescent nanoparticles for the detection of metal ions and small molecules. Analyst 2024; 149:304-349. [PMID: 38051130 DOI: 10.1039/d3an01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid development of fluorescent nanoparticles (FNPs), such as CDs, QDs, and MOFs, the construction of FNP-based probes has played a key role in improving chemical sensors. Ratiometric fluorescent probes exhibit distinct advantages, such as resistance to environmental interference and achieving visualization. Thus, FNP-based dual-emission ratiometric fluorescent probes (DRFPs) have rapidly developed in the field of metal ion and small molecule detection in the past few years. In this review, firstly we introduce the fluorescence sensing mechanisms; then, we focus on the strategies for the fabrication of DRFPs, including hybrid FNPs, single FNPs with intrinsic dual emission and target-induced new emission, and DRFPs based on auxiliary nanoparticles. In the section on hybrid FNPs, methods to assemble two types of FNPs, such as chemical bonding, electrostatic interaction, core satellite or core-shell structures, coordination, and encapsulation, are introduced. In the section on single FNPs with intrinsic dual emission, methods for the design of dual-emission CDs, QDs, and MOFs are discussed. Regarding target-induced new emission, sensitization, coordination, hydrogen bonding, and chemical reaction induced new emissions are discussed. Furthermore, in the section on DRFPs based on auxiliary nanoparticles, auxiliary nanomaterials with the inner filter effect and enzyme mimicking activity are discussed. Finally, the existing challenges and an outlook on the future of DRFP are presented. We sincerely hope that this review will contribute to the quick understanding and exploration of DRFPs by researchers.
Collapse
Affiliation(s)
- Yaxin Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Hongzhi Lu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Shoufang Xu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
7
|
Yuan L, Liu L, Mi Z, Chen M, Bai Y, Qin J, Feng F. A ratiometric sensor based on dual-emission carbon dots sensitive detection of amaranth. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123058. [PMID: 37393669 DOI: 10.1016/j.saa.2023.123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Amaranth (AMA), a common food additive, is important to strictly control the content of food for the human body. In this paper, an innovative method based on intrinsic dual-emissive carbon dots (Y/B-CDs) was used to detect AMA. Y/B-CDs have two emission wavelengths at 416 and 544 nm with the excitation wavelength at 362 nm. The addition of AMA can rapidly quench the fluorescence of the two peaks with different degrees, and ratiometric detection can be achieved. Quantitative analysis showed two linear ranges of 0.1-20 μM and 20-80 μM, and detection limits are 42 and 33 nM, respectively. Moreover, good results were obtained for the detection of AMA in beverages and candy using Y/B-CDs. This suggests that the constructed sensor has the potential to detect AMA in real samples.
Collapse
Affiliation(s)
- Lin Yuan
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Lizhen Liu
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| | - Zhi Mi
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Meng Chen
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Yunfeng Bai
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Jun Qin
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China; School Department of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Taiyuan 030600, PR China.
| |
Collapse
|
8
|
Li T, Wang D, Hu J, Fu X, Ji Y, Li R. A promising tool for clinical diagnostics: Dual-emissive carbonized polymer dots based cross-linking enhanced emission for sensitive detection of alkaline phosphatase and butyrylcholinesterase. Biosens Bioelectron 2023; 238:115576. [PMID: 37557027 DOI: 10.1016/j.bios.2023.115576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Compared with single signal readout, dual-signal readout commendably corrects the impact of systematic or background error, achieving more accurate results for the diagnosis of many diseases. This work aimed to design and prepare dual-emissive fluorescent probes for the construction of ratiometric fluorescence biosensors to detect liver disease biomarkers. Sodium alginate (SA) with numerous potential sub-fluorophores and active sites and 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl) tetrakis (benzoic acid) (TCPP) with macrocyclic conjugated structures were introduced to prepare the carbonized polymer dots (CPDs) with red/blue dual emission based on the cross-linking enhanced emission (CEE) effect and the luminescence of macrocyclic conjugated structures. The ratiometric fluorescence sensing systems were constructed by integrating the specific response of CPDs to Cu2+ and the affinity difference of Cu2+ to substrates or products of enzymes. The sensing systems, CPDs/Cu2+/PPi and CPDs/Cu2+/BTCh, were designed to detect liver disease biomarkers, alkaline phosphatase (ALP) and butyrylcholinesterase (BChE), respectively. The limit of detection for ALP and BChE was 0.35 U/L and 0.19 U/L, respectively. The proposed sensors were successfully applied to human serum samples from different health stages with satisfactory recoveries. These results demonstrate the successful design of a novel dual-emissive fluorescent probe and provide a feasible strategy for clinical detection.
Collapse
Affiliation(s)
- Tingting Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Dan Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Jing Hu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Xu Fu
- Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Gansu, Lanzhou, 730000, China.
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| |
Collapse
|
9
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
10
|
Chau PBK, Vu TH, Kim MI. Highly Efficient Fluorescent Detection of Vitamin B 12 Based on the Inner Filter Effect of Dithiol-Functionalized Silver Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2444. [PMID: 37686952 PMCID: PMC10490474 DOI: 10.3390/nano13172444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
We report a fluorescent assay for the determination of vitamin B12 (VB12) based on the inner filter effect (IFE) of 1,3-propanedithiol-functionalized silver nanoparticles (PDT-AgNPs). PDT was simply functionalized on the surface of AgNPs through Ag-thiol interaction, which leads to significantly enhanced fluorescence, with excitation and emission at 360 and 410 nm, respectively, via their thiol-mediated aggregation. Since target VB12 has strong absorption centered at 360 nm, which is almost completely overlapping with the excitation spectra of PDT-AgNPs, the VB12 induced strong quenching of the fluorescence of PDT-AgNPs via IFE. The IFE-based mechanism for the fluorescence quenching of PDT-AgNPs in the presence of VB12 was confirmed by the analyses of Stern-Volmer plots at different temperatures and fluorescence decay curves. The fluorescence-quenching efficiency of PDT-AgNPs was linearly proportional to the concentration of VB12 in a wide range of 1 to 50 μM, with a lower detection limit of 0.5 μM, while preserving excellent selectivity toward target VB12 among possible interfering molecules. Furthermore, the PDT-AgNPs-mediated assay succeeded in quantitatively detecting VB12 in drug tablets, indicating that PDT-AgNPs can serve as an IFE-based fluorescent probe in pharmaceutical preparations by taking advantages of its ease of use, rapidity, and affordability.
Collapse
Affiliation(s)
| | | | - Moon Il Kim
- Department of BioNano Technology, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea; (P.B.K.C.); (T.H.V.)
| |
Collapse
|
11
|
Gao YT, Chang S, Chen BB, Li DW. Dual-Exciting Central Carbon Nanoclusters for the Dual-Channel Detection of Hemin. INORGANICS 2023; 11:226. [DOI: 10.3390/inorganics11060226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Constructing optical nanoprobes with superior performance is highly desirable for sensitive and accurate assays. Herein, we develop a facile room-temperature strategy for the fabrication of green emissive carbon nanoclusters (CNCs) with dual-exciting centers for the dual-channel sensing of hemin. The formation of the CNCs is attributed to the crosslinking polymerization of the precursors driven by the Schiff base reaction between ethylenediamine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Most importantly, the proposed CNCs have a unique excitation-independent green emission (518 nm) with two excitation centers at 260 nm (channel 1) and 410 nm (channel 2). The dual-exciting central emission can serve as dual-channel fluorescence (FL) signals for highly sensitive and reliable detection of hemin based on the inner filter effect. Because of the great spectral overlap difference between the absorption spectrum of hemin and the excitation lights of the CNCs in the two channels, hemin has a different quenching effect on FL emission from different channels. The dual-channel signals of the CNCs can detect hemin in the range of 0.075–10 μM (channel 1) and 0.25–10 μM (channel 2), respectively. These findings not only offer new guidance for the facile synthesis of dual-exciting central CNCs but also establish a reliable sensing platform for the analysis of hemin in complex matrixes.
Collapse
Affiliation(s)
- Ya-Ting Gao
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Chang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin-Bin Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen 518172, China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
12
|
Enbanathan S, Munusamy S, Ponnan S, Jothi D, Manoj Kumar S, Sathiyanarayanan KI. AIE active luminous dye with a triphenylamine attached benzothiazole core as a portable polymer film for sensitively detecting CN- ions in food samples. Talanta 2023; 264:124726. [PMID: 37276676 DOI: 10.1016/j.talanta.2023.124726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Aggregation-induced emission (AIE) active 3-(3-(benzo[d]thiazol-2-yl)-2-hydroxyphenyl)-2-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)acrylonitrile (BTPA) has been designed and synthesized herein, with the goal of detecting CN- ions at a low-level in semi-aqueous medium. The deliberate addition of the electron-deficient alkene BTPA increased its sensitivity and selectivity to CN- ions, with a better detection limit of 6.4 nM, unveiling the next-generation approach to creating sophisticated CN- ions selective chemosensors. The ESI-MS and NMR spectra analyses provided strong support for the structures of the chemosensors, while the UV-Vis, photoluminescence, and 1H-NMR titration experiments provided support for the sensing efficiencies. Subsequently, PVDF/BTPA electrospun nanofibers have been effectively produced as functional films. These nanofiber films exhibit outstanding mechanical strength, photo/thermal stability, and optical responsiveness to CN- ions, making them a potential choice for on-field emerging contaminant detection.
Collapse
Affiliation(s)
- Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | - Sathishkumar Munusamy
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, United States.
| | - Sathiyanathan Ponnan
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Dhanapal Jothi
- Department of Advanced Organic Materials Science and Engineering, Chungnam National University, South Korea
| | - Selin Manoj Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | | |
Collapse
|
13
|
Sun Y, Yue T, Yuan Y, Shi Y. Unlabeled fluorescence ELISA using yellow emission carbon dots for the detection of
Alicyclobacillus acidoterrestris
in apple juice. EFOOD 2023. [DOI: 10.1002/efd2.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Affiliation(s)
- Yuhan Sun
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Tianli Yue
- College of Food Science and Technology Northwest University Xi'an China
| | - Yahong Yuan
- College of Food Science and Technology Northwest University Xi'an China
| | - Yiheng Shi
- School of Food Science and Engineering Shaanxi University of Science and Technology Xi'an China
| |
Collapse
|
14
|
Cui Deng C, Yi Xu Z, Sun Z, Hao Xie J, Qun Luo H, Bing Li N. One-step synthesis of aldehyde-functionalized dual-emissive carbon dots for ratiometric fluorescence detection of bisulfite in food samples. Food Chem 2022; 405:134961. [DOI: 10.1016/j.foodchem.2022.134961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
15
|
Hao Y, Dong W, Liu Y, Wen X, Shuang S, Hu Q, Dong C, Gong X. Nitrogen-doped carbon dots coupled with morin-Al 3+: Cleverly design an integrated sensing platform for ratiometric optical dual-mode and smartphone-assisted visual detection of fluoride ion. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129596. [PMID: 35863221 DOI: 10.1016/j.jhazmat.2022.129596] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Ratiometric fluorescence sensor has high selectivity and good sensitivity; however, its development is limited by intricate design, tedious synthesis, etc. Herein, a facile and effective ratiometric fluorescence sensing platform for fluoride ion (F-) detection was developed by simply combining nitrogen-doped carbon dots (N-CDs) and morin-Al3+ based on inner filter effect (IFE). The competitive binding of F- to Al3+ obviously decreased morin-Al3+ fluorescence and increased N-CDs fluorescence, attributing to the inhibition of IFE between N-CDs and morin-Al3+. The as-constructed ratiometric fluorescence sensing platform can be used for F- detection with a wide linear range (0.5-150 μM) and a low detection limit (55.8 nM). Interestingly, with the introduction of F- into the N-CDs/morin-Al3+ sensing platform, a distinguishable change in fluorescence color from green to blue enabled the N-CDs/morin-Al3+ system to be used as a smartphone-assisted visual sensing platform for F- detection with a detection limit of 2.09 μM. This platform was successfully applied for the onsite monitoring of F- in various water samples with satisfying results. These findings provide a novel guidance for the facile construction of a ratiometric optical dual-mode and smartphone-assisted sensing platform based on CDs, revealing the broad application prospect of CDs in environmental monitoring field.
Collapse
Affiliation(s)
- Yumin Hao
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Wenjuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Yang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Xiaole Wen
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Qin Hu
- College of Food Chemistry and Engineering, Yangzhou University, Yangzhou 225001, PR China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| | - Xiaojuan Gong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
16
|
Chen BB, Chang S, Jiang L, Lv J, Gao YT, Wang Y, Qian RC, Li DW, Hafez ME. Reversible polymerization of carbon dots based on dynamic covalent imine bond. J Colloid Interface Sci 2022; 621:464-469. [PMID: 35483178 DOI: 10.1016/j.jcis.2022.04.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/18/2022]
Abstract
Carbon dots (CDs), as new type of carbon-based nanoparticles, are considered to be an aggregate with irreversible polymerization. Achieving the reversible tunability of CDs luminescence based on their reversible polymerization is a challenging subject. Herein, we, for the first time, design and construct the blue-emitting CDs with reversible polymerization by a room-temperature Schiff base reaction between tannic acid and ethylenediamine. The formation of CDs is proven to be due to the crosslinking polymerization of precursors caused by imine bond. As a dynamic covalent bond, imine bond endows CDs with controllable structural transformation properties, and the prepared CDs can be depolymerized and polymerized reversibly by pH-controlled imine bond cleavage and re-formation. These properties of reversible fluorescence photoswitching make the CDs have a good application prospect in reversible information encryption.
Collapse
Affiliation(s)
- Bin-Bin Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China
| | - Shuai Chang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lei Jiang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ya-Ting Gao
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yue Wang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|