1
|
Hou S, Zuo W, Fang Q, Lu P, Tao B, Xie M, Hu G, Zhou J, Feng LW, Huang W. Modulation on Transconductance and Switching Speed of Vertical Organic Electrochemical Transistors via Structure Engineering. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5176-5183. [PMID: 39780512 DOI: 10.1021/acsami.4c17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Vertical organic electrochemical transistors (vOECTs) have received widespread attention in bioelectronics, wearable, and neuromorphic electronics due to their high transconductance (gm), low driving voltage, and biocompatibility. As key parameters of vOECTs, gm and switching speed (or transient time, τ) are vital for achieving satisfying performance in various practical applications. Here we employ vOECTs with varying top electrode widths for effective gm and switching speed modulation. It is found that both gm and τ increase linearly (from 60.0 to 105.8 mS and from 1.15 to 1.60 ms, respectively) with the increasing top electrode width (from 40 to 120 μm). This result indicates that it is challenging to simultaneously obtain both high gm and short τ. Consequently, grid-like top electrodes are employed, which are composed of small electrodes arranged with certain intervals, where ions can be injected from the gap of electrodes instead of the side of a single large electrode, leading to both high gm (202 mS) and short τ (0.797 ms). In addition, the grid-like electrode-based vOECTs successfully achieve electrocardiogram (ECG) and electrooculogram (EOG) monitoring with high signal quality. This work provides an ingenious design of the top electrodes in vOECTs and promotes further optimization of device performance, increasing gm while enabling high-frequency operation.
Collapse
Affiliation(s)
- Sihui Hou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Zuo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qizhou Fang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Pengchen Lu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Baining Tao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Miao Xie
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Guohong Hu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jinhao Zhou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
2
|
Hou X, Li S, Gao X, Peng Y, Liu Q, Wang K. Photoactive gate material-based organic photoelectrochemical transistor sensors: working principle and representative applications. Chem Commun (Camb) 2025; 61:841-856. [PMID: 39641945 DOI: 10.1039/d4cc05991c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Organic photoelectrochemical transistor (OPECT)-based sensors that use light-sensitive semiconductor materials as the gate have recently garnered increasing interest in various fields ranging from biological analysis to environmental monitoring. However, so far, the working principle and representative applications of OPECT sensors have not been discussed and reviewed systematically. In this review, we aim to present a comprehensive overview of the working principle and sensing mechanisms of OPECT-based sensors and various inorganic and organic photoactive gate materials used in OPECTs, with a focus on the representative applications and recent progress of these sensors in the fields of enzyme sensing, immunoassays, and nucleic acid-based sensing. Moreover, the challenges and outlooks that need to be addressed for future advancements in this field are summarized and discussed. This review will assist researchers in gaining a more comprehensive understanding and cognition of new OPECT-based sensing methods and devices.
Collapse
Affiliation(s)
- Xiuli Hou
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, Jiangsu, 212013, China.
| | - Shanfeng Li
- Department of gynecology and Obstetrics, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, 222062, China
| | - Xin Gao
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, Jiangsu, 212013, China.
| | - Yuxin Peng
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, Jiangsu, 212013, China.
| | - Qian Liu
- School of Agricultural Engineering, Jiangsu University, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Zhenjiang, Jiangsu, 212013, China.
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
3
|
Keene ST, Rao A, Malliaras GG. The relationship between ionic-electronic coupling and transport in organic mixed conductors. SCIENCE ADVANCES 2023; 9:eadi3536. [PMID: 37647402 PMCID: PMC10468126 DOI: 10.1126/sciadv.adi3536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) directly convert between ionic and electronic charge through electrochemical (de)doping, enabling a wide range of applications in bioelectronics, neuromorphic computing, and energy storage and conversion. While both ionic and electronic transport are individually well characterized, their combined transport has been difficult to describe self-consistently. We use in situ measurements of electrochemical (de)doping of an archetypal OMIEC to inform a quasi-field drift-diffusion model, which accurately captures experimentally measured ion transport across a range of potentials. We find that the chemical potential of holes, which is modulated by changes in doping level, represents a major driving force for mixed charge transport. Using numerical simulations at device-relevant time scales and potentials, we find that the competition between hole drift and diffusion leads to diffuse space charge regions despite high charge densities. This effect is unique to mixed conducting systems where mobile ionic charges can compensate the accumulation or depletion of electronic charge, thereby screening electrostatic driving forces.
Collapse
Affiliation(s)
- Scott T. Keene
- Department of Engineering, Electrical Engineering Division, University of Cambridge, Cambridge, CB3 0FA, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Akshay Rao
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - George G. Malliaras
- Department of Engineering, Electrical Engineering Division, University of Cambridge, Cambridge, CB3 0FA, UK
| |
Collapse
|
4
|
Lai J, Ding L, Liu Y, Fan C, You F, Wei J, Qian J, Wang K. A miniaturized organic photoelectrochemical transistor aptasensor based on nanorod arrays toward high-sensitive T-2 toxin detection in milk samples. Food Chem 2023; 423:136285. [PMID: 37156141 DOI: 10.1016/j.foodchem.2023.136285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
Detection of T-2 toxin is of great significance to environment and human health, as T-2 toxin is one of the main toxins that contaminate crops, stored grain and other food. Herein, a zero-gate-bias organic photoelectrochemical transistor (OPECT) sensor was proposed based on nanoelectrode arrays as gate photoactive materials which can result in the accumulation of photovoltage and preferable capacitance leading to better sensitivity of the OPECT. For comparison, the channel current of OPECT was 100 times higher than photocurrent of conventional photoelectrochemical (PEC) attributing to remarkable signal amplification of OPECT. It was also found that the detection limit of OPECT aptasensor was as low as 28.8 pg/L, lower than 0.34 ng/L of the conventional PEC method, further indicating the advantage of the OPECT devices in T-2 toxin determination. This research has been successfully applied in real sample detection which provided a general platform of OPECT for food safety analysis.
Collapse
Affiliation(s)
- Jingjie Lai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijun Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ying Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunhao Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Fuheng You
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
5
|
Zhang L, Wang L, He S, Zhu C, Gong Z, Zhang Y, Wang J, Yu L, Gao K, Kang X, Song Y, Lu G, Yu HD. High-Performance Organic Electrochemical Transistor Based on Photo-annealed Plasmonic Gold Nanoparticle-Doped PEDOT:PSS. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3224-3234. [PMID: 36622049 DOI: 10.1021/acsami.2c19867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic electrochemical transistors (OECTs), particularly the ones based on PEDOT:PSS, are excellent candidates for chemical and biological sensing because of their unique advantages. Improving the sensitivity and stability of OECTs is crucially important for practical applications. Herein, the transconductance of OECT is improved by 8-fold to 14.9 mS by doping the PEDOT:PSS channel with plasmonic gold nanoparticles (AuNPs) using a solution-based process followed by photo annealing. In addition, the OECT also possesses high flexibility and cyclic stability. It is revealed that the doping of AuNPs increases the conductivity of PEDOT:PSS and the photo annealing improves the crystallinity of the PEDOT:PSS channel and the interaction between AuNPs and PEDOT:PSS. These changes lead to the increase in transconductance and cyclic stability. The prepared OECTs are also demonstrated to be effective in sensitive detection of glucose within a wide concentration range of 10 nM-1 mM. Our OECTs based on photo-annealed plasmonic AuNP-doped PEDOT:PSS may find great applications in chemical and biological sensing, and this strategy may be extended to prepare many other high-performance OECT-based devices.
Collapse
Affiliation(s)
- Linrong Zhang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Li Wang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Shunhao He
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Chengcheng Zhu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Zhongyan Gong
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Yulong Zhang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Junjie Wang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Liuyingzi Yu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Kun Gao
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Xing Kang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Yaxin Song
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Gang Lu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Hai-Dong Yu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, PR China
| |
Collapse
|
6
|
Fenoy GE, Hasler R, Quartinello F, Marmisollé WA, Lorenz C, Azzaroni O, Bäuerle P, Knoll W. "Clickable" Organic Electrochemical Transistors. JACS AU 2022; 2:2778-2790. [PMID: 36590273 PMCID: PMC9795466 DOI: 10.1021/jacsau.2c00515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Interfacing the surface of an organic semiconductor with biological elements is a central quest when it comes to the development of efficient organic bioelectronic devices. Here, we present the first example of "clickable" organic electrochemical transistors (OECTs). The synthesis and characterization of an azide-derivatized EDOT monomer (azidomethyl-EDOT, EDOT-N3) are reported, as well as its deposition on Au-interdigitated electrodes through electropolymerization to yield PEDOT-N3-OECTs. The electropolymerization protocol allows for a straightforward and reliable tuning of the characteristics of the OECTs, yielding transistors with lower threshold voltages than PEDOT-based state-of-the-art devices and maximum transconductance voltage values close to 0 V, a key feature for the development of efficient organic bioelectronic devices. Subsequently, the azide moieties are employed to click alkyne-bearing molecules such as redox probes and biorecognition elements. The clicking of an alkyne-modified PEG4-biotin allows for the use of the avidin-biotin interactions to efficiently generate bioconstructs with proteins and enzymes. In addition, a dibenzocyclooctyne-modified thrombin-specific HD22 aptamer is clicked on the PEDOT-N3-OECTs, showing the application of the devices toward the development of organic transistors-based biosensors. Finally, the clicked OECTs preserve their electronic features after the different clicking procedures, demonstrating the stability and robustness of the fabricated transistors.
Collapse
Affiliation(s)
- Gonzalo E. Fenoy
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln an der Donau, Austria
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas,
Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata − CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Roger Hasler
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln an der Donau, Austria
| | - Felice Quartinello
- Department
of Agrobiotechnology, IFA-Tulln, Institute
of Environmental Biotechnology, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Waldemar A. Marmisollé
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas,
Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata − CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Christoph Lorenz
- Institute
for Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Omar Azzaroni
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas,
Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata − CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Peter Bäuerle
- Institute
for Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Wolfgang Knoll
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln an der Donau, Austria
- Department
of Scientific Coordination and Management, Danube Private University, 3500 Krems, Austria
| |
Collapse
|
7
|
Tan STM, Lee G, Denti I, LeCroy G, Rozylowicz K, Marks A, Griggs S, McCulloch I, Giovannitti A, Salleo A. Tuning Organic Electrochemical Transistor Threshold Voltage using Chemically Doped Polymer Gates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202359. [PMID: 35737653 DOI: 10.1002/adma.202202359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Organic electrochemical transistors (OECTs) have shown promise as transducers and amplifiers of minute electronic potentials due to their large transconductances. Tuning the OECT threshold voltage is important to achieve low-powered devices with amplification properties within the desired operational voltage range. However, traditional design approaches have struggled to decouple channel and materials properties from threshold voltage, thereby compromising on several other OECT performance metrics, such as electrochemical stability, transconductance, and dynamic range. In this work, simple solution-processing methods are utilized to chemically dope polymer gate electrodes, thereby controlling their work function, which in turn tunes the operation voltage range of the OECTs without perturbing their channel properties. Chemical doping of initially air-sensitive polymer electrodes further improves their electrochemical stability in ambient conditions. Thus, OECTs that are simultaneously low-powered and electrochemically resistant to oxidative side reactions under ambient conditions are demonstrated. This approach shows that threshold voltage, which is once interwoven with other OECT properties, can in fact be an independent design parameter, expanding the design space of OECTs.
Collapse
Affiliation(s)
- Siew Ting Melissa Tan
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| | - Gijun Lee
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| | - Ilaria Denti
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| | - Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| | - Kalee Rozylowicz
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| | - Adam Marks
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| | - Sophie Griggs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, California, CA, 94305, USA
| |
Collapse
|