1
|
Chanda A, Holzmann C, Schulz N, Ullrich A, DeTellem D, Albrecht M, Gross M, Ross CA, Arena DA, Phan MH, Srikanth H. Temperature Evolution of Magnon Propagation Length in Tm 3Fe 5O 12 Thin Films: Roles of Magnetic Anisotropy and Gilbert Damping. ACS NANO 2024; 18:7223-7240. [PMID: 38394644 DOI: 10.1021/acsnano.3c12495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The magnon propagation length, ⟨ξ⟩, of a ferro-/ferrimagnet (FM) is one of the key factors that controls the generation and propagation of thermally driven magnonic spin current in FM/heavy metal (HM) bilayer based spincaloritronic devices. For the development of a complete physical picture of thermally driven magnon transport in FM/HM bilayers over a wide temperature range, it is of utmost importance to understand the respective roles of temperature-dependent Gilbert damping (α) and effective magnetic anisotropy (Keff) in controlling the temperature evolution of ⟨ξ⟩. Here, we report a comprehensive investigation of the temperature-dependent longitudinal spin Seebeck effect (LSSE), radio frequency transverse susceptibility, and broad-band ferromagnetic resonance measurements on Tm3Fe5O12 (TmIG)/Pt bilayers grown on different substrates. We observe a significant drop in the LSSE voltage below 200 K independent of TmIG film thickness and substrate choice. This is attributed to the noticeable increases in effective magnetic anisotropy field, HKeff (∝Keff) and α that occur within the same temperature range. From the TmIG thickness dependence of the LSSE voltage, we determined the temperature dependence of ⟨ξ⟩ and highlighted its correlation with the temperature-dependent HKeff and α in TmIG/Pt bilayers, which will be beneficial for the development of rare-earth iron garnet based efficient spincaloritronic nanodevices.
Collapse
Affiliation(s)
- Amit Chanda
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | | | - Noah Schulz
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Aladin Ullrich
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Derick DeTellem
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Manfred Albrecht
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Miela Gross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dario A Arena
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Hariharan Srikanth
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
2
|
Zheng N, Liu H, Zeng Y. Dynamical Behavior of Pure Spin Current in Organic Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207506. [PMID: 36995070 PMCID: PMC10238225 DOI: 10.1002/advs.202207506] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Growing concentration on the novel information processing technology and low-cost, flexible materials make the spintronics and organic materials appealing for the future interdisciplinary investigations. Organic spintronics, in this context, has arisen and witnessed great advances during the past two decades owing to the continuous innovative exploitation of the charge-contained spin polarized current. Albeit with such inspiring facts, charge-absent spin angular momentum flow, namely pure spin currents (PSCs) are less probed in organic functional solids. In this review, the past exploring journey of PSC phenomenon in organic materials are retrospected, including non-magnetic semiconductors and molecular magnets. Starting with the basic concepts and the generation mechanism for PSC, the representative experimental observations of PSC in the organic-based networks are subsequently demonstrated and summarized, by accompanying explicit discussion over the propagating mechanism of net spin itself in the organic media. Finally, future perspectives on PSC in organic materials are illustrated mainly from the material point of view, including single molecule magnets, complexes for the organic ligands framework as well as the lanthanide metal complexes, organic radicals, and the emerging 2D organic magnets.
Collapse
Affiliation(s)
- Naihang Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
- Guangdong Provincial Key Laboratory of SemiconductorOptoelectronic Materials and Intelligent Photonic SystemsSchool of ScienceHarbin Institute of Technology in Shenzhen518055ShenzhenP. R. China
| | - Haoliang Liu
- Guangdong Provincial Key Laboratory of SemiconductorOptoelectronic Materials and Intelligent Photonic SystemsSchool of ScienceHarbin Institute of Technology in Shenzhen518055ShenzhenP. R. China
| | - Yu‐Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|