1
|
Cheng W, Zhao M, Lai Y, Wang X, Liu H, Xiao P, Mo G, Liu B, Liu Y. Recent advances in battery characterization using in situ XAFS, SAXS, XRD, and their combining techniques: From single scale to multiscale structure detection. EXPLORATION (BEIJING, CHINA) 2024; 4:20230056. [PMID: 38854491 PMCID: PMC10867397 DOI: 10.1002/exp.20230056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/05/2023] [Indexed: 06/11/2024]
Abstract
Revealing and clarifying the chemical reaction processes and mechanisms inside the batteries will bring a great help to the controllable preparation and performance modulation of batteries. Advanced characterization techniques based on synchrotron radiation (SR) have accelerated the development of various batteries over the past decade. In situ SR techniques have been widely used in the study of electrochemical reactions and mechanisms due to their excellent characteristics. Herein, the three most wide and important synchrotron radiation techniques used in battery research were systematically reviewed, namely X-ray absorption fine structure (XAFS) spectroscopy, small-angle X-ray scattering (SAXS), and X-ray diffraction (XRD). Special attention is paid to how these characterization techniques are used to understand the reaction mechanism of batteries and improve the practical characteristics of batteries. Moreover, the in situ combining techniques advance the acquisition of single scale structure information to the simultaneous characterization of multiscale structures, which will bring a new perspective to the research of batteries. Finally, the challenges and future opportunities of SR techniques for battery research are featured based on their current development.
Collapse
Affiliation(s)
- Weidong Cheng
- College of Materials Science and EngineeringQiqihar UniversityQiqiharChina
| | - Mengyuan Zhao
- College of Materials Science and EngineeringQiqihar UniversityQiqiharChina
| | - Yuecheng Lai
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
- Chinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xin Wang
- College of Materials Science and EngineeringQiqihar UniversityQiqiharChina
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
| | - Huanyan Liu
- College of Materials Science and EngineeringQiqihar UniversityQiqiharChina
| | - Peng Xiao
- State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical EngineeringChina University of PetroleumBeijingChina
| | - Guang Mo
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
| | - Bin Liu
- State Key Laboratory of Chemical Resource Engineering, College of ChemistryBeijingUniversity of Chemical TechnologyBeijingChina
| | - Yunpeng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Hestenes J, Sadowski JT, May R, Marbella LE. Transition Metal Dissolution Mechanisms and Impacts on Electronic Conductivity in Composite LiNi 0.5Mn 1.5O 4 Cathode Films. ACS MATERIALS AU 2023; 3:88-101. [PMID: 38089724 PMCID: PMC9999480 DOI: 10.1021/acsmaterialsau.2c00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/05/2024]
Abstract
The high-voltage LiNi0.5Mn1.5O4 (LNMO) spinel cathode material offers high energy density storage capabilities without the use of costly Co that is prevalent in other Li-ion battery chemistries (e.g., LiNixMnyCozO2 (NMC)). Unfortunately, LNMO-containing batteries suffer from poor cycling performance because of the intrinsically coupled processes of electrolyte oxidation and transition metal dissolution that occurs at high voltage. In this work, we use operando electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies to demonstrate that transition metal dissolution in LNMO is tightly coupled to HF formation (and thus, electrolyte oxidation reactions as detected with operando and in situ solution NMR), indicative of an acid-driven disproportionation reaction that occurs during delithiation (i.e., battery charging). Leveraging the temporal resolution (s-min) of magnetic resonance, we find that the LNMO particles accelerate the rate of LiPF6 decomposition and subsequent Mn2+ dissolution, possibly due to the acidic nature of terminal Mn-OH groups. X-ray photoemission electron microscopy (XPEEM) provides surface-sensitive and localized X-ray absorption spectroscopy (XAS) measurements, in addition to X-ray photoelectron spectroscopy (XPS), that indicate disproportionation is enabled by surface reconstruction upon charging, which leads to surface Mn3+ sites on the LNMO particle surface that can disproportionate into Mn2+(dissolved) and Mn4+(s). During discharge of the battery, we observe high quantities of metal fluorides (in particular, MnF2) in the cathode electrolyte interphase (CEI) on LNMO as well as the conductive carbon additives in the composite. Electronic conductivity measurements indicate that the MnF2 decreases film conductivity by threefold compared to LiF, suggesting that this CEI component may impede both the ionic and electronic properties of the cathode. Ultimately, to prevent transition metal dissolution and the associated side reactions in spinel-type cathodes (particularly those that operate at high voltages like LNMO), the use of electrolytes that offer improved anodic stability and prevent acid byproducts will likely be necessary.
Collapse
Affiliation(s)
- Julia
C. Hestenes
- Program
of Materials Science and Engineering, Department of Applied Physics
and Applied Mathematics, Columbia University, New York, New York10027, United States
| | - Jerzy T. Sadowski
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York11973, United States
| | - Richard May
- Department
of Chemical Engineering, Columbia University, New York, New York10027, United States
| | - Lauren E. Marbella
- Department
of Chemical Engineering, Columbia University, New York, New York10027, United States
| |
Collapse
|
3
|
Quilty CD, Wu D, Li W, Bock DC, Wang L, Housel LM, Abraham A, Takeuchi KJ, Marschilok AC, Takeuchi ES. Electron and Ion Transport in Lithium and Lithium-Ion Battery Negative and Positive Composite Electrodes. Chem Rev 2023; 123:1327-1363. [PMID: 36757020 DOI: 10.1021/acs.chemrev.2c00214] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Electrochemical energy storage systems, specifically lithium and lithium-ion batteries, are ubiquitous in contemporary society with the widespread deployment of portable electronic devices. Emerging storage applications such as integration of renewable energy generation and expanded adoption of electric vehicles present an array of functional demands. Critical to battery function are electron and ion transport as they determine the energy output of the battery under application conditions and what portion of the total energy contained in the battery can be utilized. This review considers electron and ion transport processes for active materials as well as positive and negative composite electrodes. Length and time scales over many orders of magnitude are relevant ranging from atomic arrangements of materials and short times for electron conduction to large format batteries and many years of operation. Characterization over this diversity of scales demands multiple methods to obtain a complete view of the transport processes involved. In addition, we offer a perspective on strategies for enabling rational design of electrodes, the role of continuum modeling, and the fundamental science needed for continued advancement of electrochemical energy storage systems with improved energy density, power, and lifetime.
Collapse
Affiliation(s)
- Calvin D Quilty
- Institute of Energy, Environment, Sustainability and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Daren Wu
- Institute of Energy, Environment, Sustainability and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Wenzao Li
- Institute of Energy, Environment, Sustainability and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - David C Bock
- Institute of Energy, Environment, Sustainability and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lei Wang
- Institute of Energy, Environment, Sustainability and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lisa M Housel
- Institute of Energy, Environment, Sustainability and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alyson Abraham
- Institute of Energy, Environment, Sustainability and Equity, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kenneth J Takeuchi
- Institute of Energy, Environment, Sustainability and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Amy C Marschilok
- Institute of Energy, Environment, Sustainability and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Esther S Takeuchi
- Institute of Energy, Environment, Sustainability and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
4
|
Quilty CD, West PJ, Li W, Dunkin MR, Wheeler GP, Ehrlich S, Ma L, Jaye C, Fischer DA, Takeuchi ES, Takeuchi KJ, Bock DC, Marschilok AC. Multimodal electrochemistry coupled microcalorimetric and X-ray probing of the capacity fade mechanisms of Nickel rich NMC - progress and outlook. Phys Chem Chem Phys 2022; 24:11471-11485. [PMID: 35532142 DOI: 10.1039/d1cp05254c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lithium nickel manganese cobalt oxide (NMC) is a commercially successful Li-ion battery cathode due to its high energy density; however, its delivered capacity must be intentionally limited to achieve capacity retention over extended cycling. To design next-generation NMC batteries with longer life and higher capacity the origins of high potential capacity fade must be understood. Operando hard X-ray characterization techniques are critical for this endeavor as they allow the acquisition of information about the evolution of structure, oxidation state, and coordination environment of NMC as the material (de)lithiates in a functional battery. This perspective outlines recent developments in the elucidation of capacity fade mechanisms in NMC through hard X-ray probes, surface sensitive soft X-ray characterization, and isothermal microcalorimetry. A case study on the effect of charging potential on NMC811 over extended cycling is presented to illustrate the benefits of these approaches. The results showed that charging to 4.7 V leads to higher delivered capacity, but much greater fade as compared to charging to 4.3 V. Operando XRD and SEM results indicated that particle fracture from increased structural distortions at >4.3 V was a contributor to capacity fade. Operando hard XAS revealed significant Ni and Co redox during cycling as well as a Jahn-Teller distortion at the discharged state (Ni3+); however, minimal differences were observed between the cells charged to 4.3 and 4.7 V. Additional XAS analyses using soft X-rays revealed significant surface reconstruction after cycling to 4.7 V, revealing another contribution to fade. Operando isothermal microcalorimetry (IMC) indicated that the high voltage charge to 4.7 V resulted in a doubling of the heat dissipation when compared to charging to 4.3 V. A lowered chemical-to-electrical energy conversion efficiency due to thermal energy waste was observed, providing a complementary characterization of electrochemical degradation. The work demonstrates the utility of multi-modal X-ray and microcalorimetric approaches to understand the causes of capacity fade in lithium-ion batteries with Ni-rich NMC.
Collapse
Affiliation(s)
- Calvin D Quilty
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, USA. .,Institute for Electrochemically Stored Energy, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Patrick J West
- Institute for Electrochemically Stored Energy, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.,Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Wenzao Li
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, USA. .,Institute for Electrochemically Stored Energy, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Mikaela R Dunkin
- Institute for Electrochemically Stored Energy, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.,Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Garrett P Wheeler
- Institute for Electrochemically Stored Energy, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.,Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | - Steven Ehrlich
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Cherno Jaye
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Daniel A Fischer
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Esther S Takeuchi
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, USA. .,Institute for Electrochemically Stored Energy, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.,Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.,Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | - Kenneth J Takeuchi
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, USA. .,Institute for Electrochemically Stored Energy, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.,Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.,Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | - David C Bock
- Institute for Electrochemically Stored Energy, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.,Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | - Amy C Marschilok
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, USA. .,Institute for Electrochemically Stored Energy, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.,Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.,Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
| |
Collapse
|