1
|
Hu B, Liu Y, Zhang B, Guo F, Zhang M, Yu W, Li S, Hao L. A high-sensitivity SnSe/Si heterojunction position-sensitive detector for ultra-low power detection. NANOSCALE 2024; 16:4170-4175. [PMID: 38334754 DOI: 10.1039/d3nr05906e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Position-sensitive detectors (PSDs) based on the lateral photovoltaic effect are crucial components in non-contact distance measurement, process control, guidance systems, and other related applications. However, PSDs are challenging due to the narrow spectral range and low sensitivity, limiting further practical application. Here, we present an ultra-sensitive SnSe/Si PSD device. A large-area uniform SnSe nanorod (NR) array film was grown on Si using a glancing-angle magnetron sputtering deposition technique and a SnSe/Si heterojunction PSD device was fabricated. PSDs exhibit an excellent photoresponse in a wide spectral range of 405-980 nm, showing an ultrahigh position sensitivity of 1517.4 mV mm-1 and an excellent spectral sensitivity of 4 × 104 V W-1. More importantly, the detection limit power of the device is as low as 10 nW, indicating the outstanding potential for weak light detection. Based on the unique structural features and interface effect, the mechanisms for the remarkable performance of the fabricated SnSe/Si PSD device are clarified. This work indicates the large potential of SnSe/Si heterojunctions as a promising material for ultrasensitive optical position-sensitive devices.
Collapse
Affiliation(s)
- Bing Hu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China.
| | - Yunjie Liu
- College of Science, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Bo Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China.
| | - Fuhai Guo
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China.
| | - Mingcong Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China.
| | - Weizhuo Yu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China.
| | - Siqi Li
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China.
| | - Lanzhong Hao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China.
| |
Collapse
|
2
|
Das S, Girish KH, Ganesh N, Narayan KS. Structured hybrid photodetectors using confined conducting polymer nanochannels. NANOSCALE ADVANCES 2023; 5:6155-6161. [PMID: 37941946 PMCID: PMC10628986 DOI: 10.1039/d3na00485f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
We design and fabricate hybrid organic inorganic perovskite photodetectors that utilize hole transport layer poly(3,4-ethylene dioxythiophene):poly (styrenesulfonate) PEDOT:PSS confined in alumina nanocylinders. This structural asymmetry in the device where the alumina nanopore template is partially filled with PEDOT:PSS provides features that improve certain device characteristics. The leakage component of the current in such devices is considerably suppressed, resulting in enhanced responsivity and detectivity. The funneling aspect of the photogenerated charge carrier transit ultimately leads to fast detectors as compared to conventional perovskite detectors.
Collapse
Affiliation(s)
- Sukanya Das
- Chemistry and Physics of Materials Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Bengaluru - 560064 India
| | - K H Girish
- Chemistry and Physics of Materials Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Bengaluru - 560064 India
| | - N Ganesh
- Chemistry and Physics of Materials Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Bengaluru - 560064 India
| | - K S Narayan
- Chemistry and Physics of Materials Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Bengaluru - 560064 India
| |
Collapse
|
3
|
Manzi M, Pica G, De Bastiani M, Kundu S, Grancini G, Saidaminov MI. Ferroelectricity in Hybrid Perovskites. J Phys Chem Lett 2023; 14:3535-3552. [PMID: 37017277 DOI: 10.1021/acs.jpclett.3c00566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ferroelectric ceramics such as PbZrxTi1-xO3 (PZT) are widely applied in many fields, from medical to aerospace, because of their dielectric, piezoelectric, and pyroelectric properties. In the past few years, hybrid organic-inorganic halide perovskites have gradually attracted attention for their optical and electronic properties, including ferroelectricity, and for their low fabrication costs. In this Review, we first describe techniques that are used to quantify ferroelectric figures of merit of a material. We then discuss ferroelectricity in hybrid perovskites, starting from controversies in methylammonium iodoplumbate perovskites and then focusing on low-dimensional perovskites that offer an unambiguous platform to obtain ferroelectricity. Finally, we provide examples of the application of perovskite ferroelectrics in solar cells, LEDs, and X-ray detectors. We conclude that the vast structure-property tunability makes low-dimensional hybrid perovskites promising, but they have yet to offer ferroelectric figures of merit (e.g., saturated polarization) and thermal stability (e.g., Curie temperature) competitive with those of conventional oxide perovskite ferroelectric materials.
Collapse
Affiliation(s)
| | - Giovanni Pica
- Department of Chemistry, University of Pavia, Via T. Taramelli 14, 27100 Pavia, Italy
| | - Michele De Bastiani
- Department of Chemistry, University of Pavia, Via T. Taramelli 14, 27100 Pavia, Italy
| | | | - Giulia Grancini
- Department of Chemistry & INSTM, University of Pavia, Via T. Taramelli 14, 27100 Pavia, Italy
| | | |
Collapse
|
4
|
Chen Y, Yang X, Zhang C, He G, Chen X, Qiao Q, Zang J, Dou W, Sun P, Deng Y, Dong L, Shan CX. Ga 2O 3-Based Solar-Blind Position-Sensitive Detector for Noncontact Measurement and Optoelectronic Demodulation. NANO LETTERS 2022; 22:4888-4896. [PMID: 35666185 DOI: 10.1021/acs.nanolett.2c01322] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a kind of photodetector, position-sensitive-detectors (PSDs) have been widely used in noncontact photoelectric positioning and measurement. However, fabrications and applications of solar-blind PSDs remain yet to be harnessed. Herein, we demonstrate a solar-blind PSD developed from a graphene/Ga2O3 Schottky junction with a 25-nanometer-thick Ga2O3 film, in which the absorption of the nanometer-thick Ga2O3 is enhanced by multibeam interference. The graphene/Ga2O3 junction exhibits a responsivity of 48.5 mA/W and a rise/decay time of 0.8/99.8 μs at zero bias. Moreover, the position of the solar-blind spot can be determined by the output signals of the PSD. Using the device as a sensor of noncontact test systems, we demonstrate its application in measurement of angular, displacement, and light trajectory. In addition, the position-sensitive outputs have been used to demodulate optical signals into electrical signals. The results may prospect the application of solar-blind PSDs in measurement, tracking, communication, and so on.
Collapse
Affiliation(s)
- Yancheng Chen
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Xun Yang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Chongyang Zhang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Gaohang He
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Xuexia Chen
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Qian Qiao
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Jinhao Zang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Wenjie Dou
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Pengxiang Sun
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yuan Deng
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|