1
|
Guerrero Piña JC, Alpízar D, Murillo P, Carpio-Chaves M, Pereira-Reyes R, Vega-Baudrit J, Villarreal C. Advances in mixed-matrix membranes for biorefining of biogas from anaerobic digestion. Front Chem 2024; 12:1393696. [PMID: 38887701 PMCID: PMC11180831 DOI: 10.3389/fchem.2024.1393696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
This article provides a comprehensive review of the state-of-the-art technology of polymeric mixed-matrix membranes for CO2/CH4 separation that can be applied in medium, small, and domestic biogas systems operating at low pressures (0.2-6 kPa). Critical data from the latest publications of CO2/CH4 separation membranes were analyzed, considering the ratio of CO2/CH4 permeabilities, the CO2 selectivity, the operating pressures at which the membranes were tested, the chemistry of the polymers studied and their gas separation mechanisms. And the different nanomaterials as fillers. The intrinsic microporous polymers (PIMs) were identified as potential candidates for biomethane purification due to their high permeability and selectivity, which are compatible with operation pressures below 1 bar, and as low as 0.2 bar. This scenario contrasts with other polymers that require pressures above 1 bar for operation, with some reaching 20 bar. Furthermore, the combination of PIM with GO in MMMs was found to not influence the permeability significantly, but to contribute to the membrane stability over time, by preventing the structural collapse of the membrane caused by aging. The systematic analysis here presented is a valuable resource for defining the future technological development of CO2/CH4 separation membranes for biogas biorefining.
Collapse
Affiliation(s)
- Jean Carlo Guerrero Piña
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
- Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CENAT), San José, Costa Rica
| | - Daniel Alpízar
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
- Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CENAT), San José, Costa Rica
| | - Paola Murillo
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
- Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CENAT), San José, Costa Rica
| | - Mónica Carpio-Chaves
- Escuela de Ingeniería en Seguridad Laboral e Higiene Ambiental, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Reynaldo Pereira-Reyes
- Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CENAT), San José, Costa Rica
| | - José Vega-Baudrit
- Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CENAT), San José, Costa Rica
| | - Claudia Villarreal
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
- Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CENAT), San José, Costa Rica
| |
Collapse
|
2
|
Luo W, Wang C, Li X, Liu J, Hou D, Zhang X, Huang G, Lu X, Li Y, Zhou T. Advancements in defect engineering of two-dimensional nanomaterial-based membranes for enhanced gas separation. Chem Commun (Camb) 2024; 60:3745-3763. [PMID: 38525977 DOI: 10.1039/d4cc00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The advent of two-dimensional nanomaterials, a revolutionary class of materials, is marked by their atomic-scale thickness, superior aspect ratios, robust mechanical attributes, and exceptional chemical stability. These materials, producible on a large scale, are emerging as the forefront candidates in the domain of membrane-based gas separation. The concept of defect engineering in 2D nanomaterials has introduced a novel approach in their application for membrane separation, offering an effective technique to augment the performance of these membranes. Nonetheless, the development of customized microstructures in gas separation membranes via defect engineering remains nascent. Hence, this review is designed to serve as a comprehensive guide for the application of defect engineering in 2D nanomaterial-based membranes. It delves into the most recent developments in this field, encompassing the synthesis methodologies of defective 2D nanomaterials and the mechanisms underlying gas transport. Special emphasis is placed on the utilization of defect-engineered 2D nanomaterial-based membranes in gas capture applications. Furthermore, the paper encapsulates the burgeoning challenges and prospective advancements in this area. In essence, defect engineering emerges as a promising avenue for enhancing the efficacy of 2D nanomaterial-based membranes in gas separation, offering significant potential for advancements in membrane-based gas separation technologies.
Collapse
Affiliation(s)
- Wenjia Luo
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Changzheng Wang
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Xueguo Li
- Baiyin Nonferrous Group Company Limited Copper Company, Baiyin 730900, P. R. China
| | - Jian Liu
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Duo Hou
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Xi Zhang
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Guoxian Huang
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Xingwu Lu
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Yanlong Li
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| | - Tao Zhou
- Northwest Research Institute of Mining and Metallurgy, Baiyin 730900, P. R. China. wjluo94.@126.com
| |
Collapse
|
3
|
Emamverdi F, Huang J, Razavi NM, Bojdys MJ, Foster AB, Budd PM, Böhning M, Schönhals A. Molecular Mobility and Gas Transport Properties of Mixed Matrix Membranes Based on PIM-1 and a Phosphinine Containing Covalent Organic Framework. Macromolecules 2024; 57:1829-1845. [PMID: 38435679 PMCID: PMC10902888 DOI: 10.1021/acs.macromol.3c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
Polymers with intrinsic microporosity (PIMs) are gaining attention as gas separation membranes. Nevertheless, they face limitations due to their pronounced physical aging. In this study, a covalent organic framework containing λ5-phosphinine moieties, CPSF-EtO, was incorporated as a nanofiller (concentration range 0-10 wt %) into a PIM-1 matrix forming dense films with a thickness of ca. 100 μm. The aim of the investigation was to investigate possible enhancements of gas transport properties and mitigating effects on physical aging. The incorporation of the nanofiller occurred on an nanoaggregate level with domains up to 100 nm, as observed by T-SEM and confirmed by X-ray scattering. Moreover, the X-ray data show that the structure of the microporous network of the PIM-1 matrix is changed by the nanofiller. As molecular mobility is fundamental for gas transport as well as for physical aging, the study includes dielectric investigations of pure PIM-1 and PIM-1/CPSF-EtO mixed matrix membranes to establish a correlation between the molecular mobility and the gas transport properties. Using the time-lag method, the gas permeability and the permselectivity were determined for N2, O2, CH4, and CO2 for samples with variation in filler content. A significant increase in the permeability of CH4 and CO2 (50% increase compared to pure PIM-1) was observed for a concentration of 5 wt % of the nanofiller. Furthermore, the most pronounced change in the permselectivity was found for the gas pair CO2/N2 at a filler concentration of 7 wt %.
Collapse
Affiliation(s)
- Farnaz Emamverdi
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Jieyang Huang
- Department
of Chemistry, Humboldt University, Brook-Taylor Straße 2, Berlin 12489, Germany
| | - Negar Mosane Razavi
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Michael J. Bojdys
- Department
of Chemistry, Humboldt University, Brook-Taylor Straße 2, Berlin 12489, Germany
| | - Andrew B. Foster
- School
of Chemistry, University of Manchester, Manchester M 13 9PL, United Kingdom
| | - Peter M. Budd
- School
of Chemistry, University of Manchester, Manchester M 13 9PL, United Kingdom
| | - Martin Böhning
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Andreas Schönhals
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| |
Collapse
|
4
|
Astorino C, De Nardo E, Lettieri S, Ferraro G, Pirri CF, Bocchini S. Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM). MEMBRANES 2023; 13:903. [PMID: 38132907 PMCID: PMC10744731 DOI: 10.3390/membranes13120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Membrane-based Polymers of Intrinsic Microporosity (PIMs) are promising candidates for energy-efficient industrial gas separations, especially for the separation of carbon dioxide over methane (CO2/CH4) and carbon dioxide over nitrogen (CO2/N2) for natural gas/biogas upgrading and carbon capture from flue gases, respectively. Compared to other separation techniques, membrane separations offer potential energy and cost savings. Ultra-permeable PIM-based polymers are currently leading the trade-off between permeability and selectivity for gas separations, particularly in CO2/CH4 and CO2/N2. These membranes show a significant improvement in performance and fall within a linear correlation on benchmark Robeson plots, which are parallel to, but significantly above, the CO2/CH4 and CO2/N2 Robeson upper bounds. This improvement is expected to enhance the credibility of polymer membranes for CO2 separations and stimulate further research in polymer science and applied engineering to develop membrane systems for these CO2 separations, which are critical to energy and environmental sustainability. This review aims to highlight the state-of-the-art strategies employed to enhance gas separation performances in PIM-based membranes while also mitigating aging effects. These strategies include chemical post-modification, crosslinking, UV and thermal treatment of PIM, as well as the incorporation of nanofillers in the polymeric matrix.
Collapse
Affiliation(s)
- Carmela Astorino
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Eugenio De Nardo
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Stefania Lettieri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Giuseppe Ferraro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Candido Fabrizio Pirri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Sergio Bocchini
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| |
Collapse
|
5
|
Tong Y, Liu H, Dai S, Jiang DE. Monolayer Fullerene Membranes for Hydrogen Separation. NANO LETTERS 2023; 23:7470-7476. [PMID: 37540493 DOI: 10.1021/acs.nanolett.3c01946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Hydrogen separation membranes are a critical component in the emerging hydrogen economy, offering an energy-efficient solution for the purification and production of hydrogen gas. Inspired by the recent discovery of monolayer covalent fullerene networks, here we show from concentration-gradient-driven molecular dynamics that quasi-square-latticed monolayer fullerene membranes provide the best pore size match, a unique funnel-shaped pore, and entropic selectivity. The integration of these attributes renders these membranes promising for separating H2 from larger gases such as CO2 and O2. The ultrathin membranes exhibit excellent hydrogen permeance as well as high selectivity for H2/CO2 and H2/O2 separations, surpassing the 2008 Robeson upper bounds by a large margin. The present work points toward a promising direction of using monolayer fullerene networks as membranes for high-permeance, selective hydrogen separation for processes such as water splitting.
Collapse
Affiliation(s)
- Yujing Tong
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hongjun Liu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
6
|
Two-dimensional materials for gas separation membranes. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Cao J, Li J, Majdi HS, Le BN, Amine Khadimallah M, Elhosiny Ali H, Assilzadeh H. Assessment of graphene-based polymers for sustainable wastewater treatment: Development of a soft computing approach. CHEMOSPHERE 2023; 313:137189. [PMID: 36379432 DOI: 10.1016/j.chemosphere.2022.137189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Since graphene possesses distinct electrical and material properties that could improve material performance, there is currently a growing demand for graphene-based electronics and applications. Numerous potential applications for graphene include lightweight and high-strength polymeric composite materials. Due to its structural qualities, which include low thickness and compact 2D dimensions, it has also been recognized as a promising nanomaterial for water-barrier applications. For barrier polymer applications, it is usually applied using two main strategies. The first is the application of graphene, graphene oxide (GO), and reduced graphene oxide (rGO) to polymeric substrates through transfer or coating. In the second method, fully exfoliated GO or rGO is integrated into the material. This study provides an overview of the most recent findings from research on the use of graphene in the context of water-barrier applications. The advantages and current limits of graphene-based composites are compared with those of other nanomaterials utilized for barrier purposes in order to emphasize difficult challenges for future study and prospective applications.
Collapse
Affiliation(s)
- Jun Cao
- Chongqing Creation Vocational College, Yongchuan 402160, Chongqing, China
| | - Jialing Li
- College of Engineering Management, Nueva Ecija University of Science and Technology, Cabanatuan, Philippines.
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| | - Mohamed Amine Khadimallah
- Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - H Elhosiny Ali
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia; Physics Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| | - Hamid Assilzadeh
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| |
Collapse
|
8
|
Gutiérrez-Hernández SV, Pardo F, Foster AB, Gorgojo P, Budd PM, Zarca G, Urtiaga A. Outstanding performance of PIM-1 membranes towards the separation of fluorinated refrigerant gases. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
9
|
Yu M, Foster AB, Scholes CA, Kentish SE, Budd PM. Methanol Vapor Retards Aging of PIM-1 Thin Film Composite Membranes in Storage. ACS Macro Lett 2023; 12:113-117. [PMID: 36608265 PMCID: PMC9850912 DOI: 10.1021/acsmacrolett.2c00568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Physical aging of glassy polymers leads to a decrease in permeability over time when they are used in membranes. This hinders the industrial application of high free volume polymers, such as the archetypal polymer of intrinsic microporosity PIM-1, for membrane gas separation. In thin film composite (TFC) membranes, aging is much more rapid than in thicker self-standing membranes, as rearrangement within the thin active layer is relatively fast. Liquid alcohol treatment, which swells the membrane, is often used in the laboratory to rejuvenate aged self-standing membranes, but this is not easily applied on an industrial scale and is not suitable to refresh TFC membranes because of the risk of membrane delamination. In this work, it is demonstrated that a simple method of storage in an atmosphere of methanol vapor effectively retards physical aging of PIM-1 TFC membranes. The same method can also be utilized to refresh aged PIM-1 TFC membranes, and one-week methanol vapor storage is sufficient to recover most of the original CO2 permeance.
Collapse
Affiliation(s)
- Ming Yu
- Department
of Chemical Engineering, The University
of Melbourne, Melbourne, VIC 3010, Australia,Department
of Chemistry, School of Natural Sciences, The University of Manchester, M13 9PL Manchester, U.K.
| | - Andrew B. Foster
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, M13 9PL Manchester, U.K.
| | - Colin A. Scholes
- Department
of Chemical Engineering, The University
of Melbourne, Melbourne, VIC 3010, Australia,
| | - Sandra E. Kentish
- Department
of Chemical Engineering, The University
of Melbourne, Melbourne, VIC 3010, Australia
| | - Peter M. Budd
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, M13 9PL Manchester, U.K.,
| |
Collapse
|
10
|
Ali A, Mubashir M, Abdulrahman A, Phelan PE. Ultra-permeable intercalated metal-induced microporous polymer nano-dots rooted smart membrane for environmental remediation. CHEMOSPHERE 2022; 306:135482. [PMID: 35780984 DOI: 10.1016/j.chemosphere.2022.135482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Energy efficient CO2 separation using ultrathin smart membranes must possess efficient permeation performance, higher surface area and hydrostatic stability at industrially relevant high pressures. However, ultrathin membranes are susceptible to lower surface area, plasticization and swelling which reduces the performance at higher pressure under humidified conditions. This paper evaluates the routes for the potential intercalated effect of metal-induced microporous polymers (MMPs) dots into a cellulose-based polymer matrix to enhance promising properties, including the surface area, CO2 permeation performance, plasticization resistance and hydrostatic stability of ultrathin smart membranes at high pressure. The MMP dots-rooted smart membrane demonstrated 55 nm thickness of ultrathin selective layer with a higher surface of 220 cm2. The enhancement of CO2 permeability from 14.1 to 108.9 Barrer and CO2/CH4 ideal selectivity from 11.8 to 31.1 was observed due to the integration of MMP dots into the cellulose polymer. This result could be due to enhancement of nitrogen lone pair electron interactions with CO2 followed by amines group which improved the CO2 adsorption on the membrane surface. The MMP dots-rooted membrane demonstrated plasticization resistance up to 26 bar pressure, as compared to a pristine polymer membrane which is a percentage increase of 160% under humidified conditions. The resulting ultrathin smart membrane exhibited stable performance for a duration of 200 h under humidified conditions which confirmed the higher hydrostatic stability of the membrane. These findings confirmed the potential of MMP dots materials for the development of an industrial scale CO2 separation process using intercalated membranes.
Collapse
Affiliation(s)
- Abulhassan Ali
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000 Kuala Lumpur, Malaysia.
| | - Aymn Abdulrahman
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Patrick E Phelan
- School for Engineering of Matter, Transport & Energy, Arizona State University, USA
| |
Collapse
|
11
|
Mohsenpour S, Ameen AW, Leaper S, Skuse C, Almansour F, Budd PM, Gorgojo P. PIM-1 membranes containing POSS - graphene oxide for CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Wang X, Zhang Y, Chen X, Wang Y, He M, Shan Y, Li Y, Zhang F, Chen X, Kita H. Preparation of Pebax 1657/MAF-7 Mixed Matrix Membranes with Enhanced CO 2/N 2 Separation by Active Site of Triazole Ligand. MEMBRANES 2022; 12:786. [PMID: 36005701 PMCID: PMC9412359 DOI: 10.3390/membranes12080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Fillers play a critical role in the performance of mixed matrix membranes (MMMs). Microporous metal azolate frameworks (MAFs) are a subclass material of metal-organic frameworks (MOFs). Due to the uncoordinated nitrogen of the organic ligands, MAF-7 (SOD-[Zn(mtz)2], Hmtz = 3-methyl-1,2,4-triazole, window: d = 0.34 nm) shows excellent CO2 adsorption performance. In this work, Pebax 1657/MAF-7 MMMs were prepared by a sample solution casting method with MAF-7 particles as fillers for the first time. By means of X-ray diffraction (XRD), scanning electron microscope (SEM), infrared radiation (IR), and thermogravimetry (TG), the compositional and structural properties of the mixed matrix membrane with different filler content were analyzed. The results show that the compatibility of MAF-7 and Pebax is good with a filler content of 5 wt.%. The pure gas testing showed that mixed matrix membrane has a high ideal CO2/N2 selectivity of 124.84 together with a better CO2 permeability of 76.15 Barrer with the optimized filler content of 5 wt.%. The obtained membrane showed 323.04% enhancement in selectivity of CO2/N2 and 27.74% increase in the permeability of CO2 compared to the pristine membrane at 25 °C and 3 bar. The excellent separation performance may be due to the ligands that can afford a Lewis base active site for CO2 binding with the uniform dispersion of MAF-7 particles in Pebax and the favorable interface compatibility. The obtained membrane overcomes the Robeson's upper bound in 2008 for CO2/N2 separation. This work provides a new strategy by utilizing MAFs as fillers with triazole ligand to enhance the gas separation performance of mixed matrix membranes.
Collapse
Affiliation(s)
- Xingqian Wang
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yuping Zhang
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xinwei Chen
- The Attached Middle School to Jiangxi Normal University, Nanchang 330031, China
| | - Yifei Wang
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Mingliang He
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yongjiang Shan
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yuqin Li
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Fei Zhang
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xiangshu Chen
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Hidetoshi Kita
- Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Ube 755-8611, Japan
| |
Collapse
|
13
|
Niu Y, Chen Y, Bao S, Sun H, Wang Y, Ge B, Li P, Hou Y. Fabrication of polyarylate thin-film nanocomposite membrane based on graphene quantum dots interlayer for enhanced gas separation performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Zhu H, Li R, Liu G, Pan Y, Li J, Wang Z, Guo Y, Liu G, Jin W. Efficient separation of methanol/dimethyl carbonate mixtures by UiO-66 MOF incorporated chitosan mixed-matrix membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Budd PM, Foster AB. Seeking synergy in membranes: blends and mixtures with polymers of intrinsic microporosity. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Yan S, Yu H, Chen Z. A polyimide/poly( N-vinylimidazole) membrane for CO 2/CH 4 separation with high selectivity and permeability. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221090671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Membranes with both good permeation and selectivity are highly desired for gas separations. In this study, we synthesized a new 6FDA-type polyimide copolymer 6FDA-BDTA-ODA, and then an organic polymer of poly ( N-vinylimidazole) was doped into the polyimide to prepare mixed matrix membranes (MMMs). We also studied the effect of poly ( N-vinylimidazole) contents on the separation performance of MMMs. The results showed that the ideal selectivity for CO2/CH4 was improved by adding the poly ( N-vinylimidazole) filler. The ideal selectivity reached 63.5 with 6 wt% poly ( N-vinylimidazole) loading with the permeability of 29.2 Barrer. The highly permeable MMMs showed a considerably enhanced performance for CO2/CH4 that close to the 2008 Robeson upper-bound. The gas separation performance of the prepared MMMs for CO2/CH4 was improved compared to that of the pure polymer membrane, indicating that the copolyimide/poly ( N-vinylimidazole) MMMs have promising applications in CO2/CH4 gas separation.
Collapse
Affiliation(s)
- Shuo Yan
- CNOOC Tianjin Chemical Research and Design Institute, Tianjin, China
| | - Haibin Yu
- CNOOC Tianjin Chemical Research and Design Institute, Tianjin, China
| | - Zan Chen
- CNOOC Tianjin Chemical Research and Design Institute, Tianjin, China
| |
Collapse
|