1
|
Lei H, Yang X, Chen Z, Rawach D, Du L, Liang Z, Li DS, Zhang G, Tavares AC, Sun S. Multiscale Understanding of Anion Exchange Membrane Fuel Cells: Mechanisms, Electrocatalysts, Polymers, and Cell Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2410106. [PMID: 39797443 DOI: 10.1002/adma.202410106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Anion exchange membrane fuel cells (AEMFCs) are among the most promising sustainable electrochemical technologies to help solve energy challenges. Compared to proton exchange membrane fuel cells (PEMFCs), AEMFCs offer a broader choice of catalyst materials and a less corrosive operating environment for the bipolar plates and the membrane. This can lead to potentially lower costs and longer operational life than PEMFCs. These significant advantages have made AEMFCs highly competitive in the future fuel cell market, particularly after advancements in developing non-platinum-group-metal anode electrocatalysts, anion exchange membranes and ionomers, and in understanding the relationships between cell operating conditions and mass transport in AEMFCs. This review aims to compile recent literature to provide a comprehensive understanding of AEMFCs in three key areas: i) the mechanisms of the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) in alkaline media; ii) recent advancements in the synthesis routes and structure-property relationships of cutting-edge HOR and ORR electrocatalysts, as well as anion exchange membranes and ionomers; and iii) fuel cell operating conditions, including water management and impact of CO2. Finally, based on these aspects, the future development and perspectives of AEMFCs are proposed.
Collapse
Affiliation(s)
- Huiyu Lei
- Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, Québec, J3×1P7, Canada
| | - Xiaohua Yang
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montréal, Québec, H3C 1K3, Canada
| | - Zhangsen Chen
- Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, Québec, J3×1P7, Canada
| | - Diane Rawach
- Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, Québec, J3×1P7, Canada
| | - Lei Du
- Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, Québec, J3×1P7, Canada
| | - Zhenxing Liang
- Key Laboratory on Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Gaixia Zhang
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montréal, Québec, H3C 1K3, Canada
| | - Ana C Tavares
- Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, Québec, J3×1P7, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, Québec, J3×1P7, Canada
| |
Collapse
|
2
|
Honig HC, Mostoni S, Presman Y, Snitkoff-Sol RZ, Valagussa P, D'Arienzo M, Scotti R, Santoro C, Muhyuddin M, Elbaz L. Morphological and structural design through hard-templating of PGM-free electrocatalysts for AEMFC applications. NANOSCALE 2024; 16:11174-11186. [PMID: 38770663 DOI: 10.1039/d4nr01779j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
This study delves into the critical role of customized materials design and synthesis methods in influencing the performance of electrocatalysts for the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs). It introduces a novel approach to obtain platinum-free (PGM-free) electrocatalysts based on the controlled integration of iron active sites onto the surface of silica nanoparticles (NPs) by using nitrogen-based surface ligands. These NPs are used as hard templates to form tailored nanostructured electrocatalysts with an improved iron dispersion into the carbon matrix. By utilizing a wide array of analytical techniques including infrared and X-ray photoelectron spectroscopy techniques, X-ray diffraction and surface area measurements, this work provides insight into the physical parameters that are critical for ORR electrocatalysis with PGM-free electrocatalysts. The new catalysts showed a hierarchical structure containing a large portion of graphitic zones which contribute to the catalyst stability. They also had a high electrochemically active site density reaching 1.47 × 1019 sites g-1 for SAFe_M_P1AP2 and 1.14 × 1019 sites g-1 for SEFe_M_P1AP2, explaining the difference in performance in fuel cell measurements. These findings underscore the potential impact of a controlled materials design for advancing green energy applications.
Collapse
Affiliation(s)
- Hilah C Honig
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Silvia Mostoni
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Yan Presman
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Rifael Z Snitkoff-Sol
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Paolo Valagussa
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Massimiliano D'Arienzo
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Roberto Scotti
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
- Institute for Photonics and Nanotechnologies-CNR, Via alla Cascata 56/C, 38123 Povo, TN, Italy
| | - Carlo Santoro
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Mohsin Muhyuddin
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Lior Elbaz
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
3
|
Li JR, Liu MX, Liu X, Yu XH, Li QZ, Sun Q, Sun T, Cao S, Hou CC. The Recent Progress of Oxygen Reduction Electrocatalysts Used at Fuel Cell Level. SMALL METHODS 2024; 8:e2301249. [PMID: 38012517 DOI: 10.1002/smtd.202301249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) are gaining significant interest as an attractive substitute for traditional fuel cells, with higher energy density, lower environmental pollution, and better operation efficiency. However, the cathode reaction, i.e., the oxygen reduction reaction (ORR), is widely proved to be inefficient, and therefore an obstacle to the widespread development of PEMFCs. The requirement for affordable highly-efficient ORR catalysts is extremely urgent to be met, especially at fuel cell level. Unfortunately, most previous reports focus on the ORR performance at rotating disk electrodes (RDE) level instead of membrane electrode assembly (MEA) level, making it harder to evaluate ORR catalysts operating under real vehicle conditions. Obviously, it is extremely necessary to develop an in-depth understanding of the structure-activity relationship of highly-efficient ORR catalysts applied at MEA level. In this work, an overview of the latest advances in ORR catalysts is provided with an emphasis on their performance at MEA level, hoping to cover the novel and systemic insights for innovative and efficient ORR catalyst design and applications in PEMFCs.
Collapse
Affiliation(s)
- Jin-Rong Li
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Ming-Xu Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiang-Hui Yu
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qin-Zhu Li
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qi Sun
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Shuang Cao
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Chun-Chao Hou
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| |
Collapse
|
4
|
Shen J, Liu Q, Zhang Y, Sun Q, Zhang Y, Li H, Chen Y, Yang G. Tetraiodo Fe/Ni phthalocyanine-based molecular catalysts for highly efficient oxygen reduction reaction and oxygen evolution reaction: Constructing a built-in electric field with iodine groups. J Colloid Interface Sci 2024; 655:474-484. [PMID: 37952452 DOI: 10.1016/j.jcis.2023.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
In this paper, we report on the preparation and catalysis of a bifunctional molecular catalyst (Fe[Pc(I)4]+Ni[Pc(I)4]@NCPDI) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in rechargeable Zn-air batteries. This catalyst is prepared by self-assembling tetraiodo metal phthalocyanines (Fe[Pc(I)4] and Ni[Pc(I)4]) on a 2D N-doped carbon material (NCPDI) through π-π interactions. The introduction of iodine groups in the edge of phthalocyanines controls the density of electron cloud and electrostatic potential around Fe-N/Ni-N sites and constructs a built-in electric field that facilitates directional transport of charges, enhancing the catalytic activity of the catalyst. Density functional theory (DFT) calculations support this mechanism by showing a reduced energy barrier for the ORR rate-determining step (RDS). The Fe[Pc(I)4]+Ni[Pc(I)4]@NCPDI exhibits excellent performance outperforming 20 wt% Pt/C and single-molecule self-assembled Fe[Pc(I)4]@NCPDI and Ni[Pc(I)4]@NCPDI, with a half-wave potential of E1/2 = 0.940 V in the ORR process under alkaline condition. During the OER process, Fe[Pc(I)4]+Ni[Pc(I)4]@NCPDI exhibited a low overpotential of 298 mV at 10 mA cm-2 under the alkaline condition, which is much better than RuO2, Fe[Pc(I)4]@NCPDI and Ni[Pc(I)4]@NCPDI. The catalyst also demonstrates excellent catalysis and durability in rechargeable Zn-air batteries. This work provides a simple and specific method to develop efficient multifunctional molecular electrocatalysts.
Collapse
Affiliation(s)
- Jingshun Shen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuexing Zhang
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Qiqi Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuming Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Hao Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Guangwu Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
5
|
Samala NR, Friedman A, Elbaz L, Grinberg I. Identification of a Durability Descriptor for Molecular Oxygen Reduction Reaction Catalysts. J Phys Chem Lett 2024; 15:481-489. [PMID: 38190330 DOI: 10.1021/acs.jpclett.3c03209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The development of durable platinum-group-metal-free oxygen reduction reaction (ORR) catalysts is a key research direction for enabling the wide use of fuel cells. Here, we use a combination of experimental measurements and density functional theory calculations to study the activity and durability of seven iron-based metallophthalocyanine (MPc) ORR catalysts that differ only in the identity of the substituent groups on the MPcs. While the MPcs show similar ORR activity, their durabilities as measured by the current decay half-life differ greatly. We find that the energy difference between the hydrogenated intermediate structure and the final demetalated structure (ΔEdemetalation) of the MPcs is linearly related to the degradation reaction barrier energy. Comparison to the degradation data for the previously studied metallocorrole systems suggested that ΔEdemetalation also serves as a descriptor for the corrole systems and that the high availability of protons at the active site due to the COOH group of the o-corrole decreases the durability.
Collapse
Affiliation(s)
| | - Ariel Friedman
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Lior Elbaz
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ilya Grinberg
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
6
|
Meng J, Qin H, Lei H, Li X, Fan J, Zhang W, Apfel UP, Cao R. Adapting Synthetic Models of Heme/Cu Sites to Energy-Efficient Electrocatalytic Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023:e202312255. [PMID: 37921242 DOI: 10.1002/anie.202312255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
In nature, cytochrome c oxidases catalyze the 4e- oxygen reduction reaction (ORR) at the heme/Cu site, in which CuI is used to assist O2 activation. Because of the thermodynamic barrier to generate CuI , synthetic Fe-porphyrin/Cu complexes usually show moderate electrocatalytic ORR activity. We herein report on a Co-corrole/Co complex 1-Co for energy-efficient electrocatalytic ORR. By hanging a CoII ion over Co corrole, 1-Co realizes electrocatalytic 4e- ORR with a half-wave potential of 0.89 V versus RHE, which is outstanding among corrole-based electrocatalysts. Notably, 1-Co outperforms Co corrole hanged with CuII or ZnII . We revealed that the hanging CoII ion can provide an electron to improve O2 binding thermodynamically and dynamically, a function represented by the biological CuI ion of the heme/Cu site. This work is significant to present a remarkable ORR electrocatalyst and to show the vital role of a second-sphere redox-active metal ion in promoting O2 binding and activation.
Collapse
Affiliation(s)
- Jia Meng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haonan Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Juan Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
7
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
8
|
Honig HC, Elbaz L. Degradation Mechanisms of Platinum Group Metal‐Free Oxygen Reduction Reaction Catalyst based on Iron Phthalocyanine. ChemElectroChem 2023. [DOI: 10.1002/celc.202300042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Hilah C. Honig
- Chemistry Department Bar-Ilan University Ramat-Gan 529002 Israel
- Bar-Ilan Center for Nanotechnology and Advance Materials Bar-Ilan University Ramat-Gan 529002 Israel
| | - Lior Elbaz
- Chemistry Department Bar-Ilan University Ramat-Gan 529002 Israel
- Bar-Ilan Center for Nanotechnology and Advance Materials Bar-Ilan University Ramat-Gan 529002 Israel
| |
Collapse
|