1
|
Mahapatra M, Bourguignon M, Grignard B, Vandevenne M, Galleni M, Detrembleur C. Nonconventional Fluorescent Non-Isocyanate Polyurethane Foams for Multipurpose Sensing Applications. Angew Chem Int Ed Engl 2024:e202413605. [PMID: 39297731 DOI: 10.1002/anie.202413605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Indexed: 11/03/2024]
Abstract
Fluorescent foams with interconnected pores are attractive for the detection and quantification of various products. However, many fluorescent probes are suffering from aggregation-caused fluorescence quenching in their solid/aggregated state, are costly, and/or not straightforward to incorporate in foams, limiting their utility for this application. Herein, non-isocyanate polyurethane foams, prepared by the simple water-induced self-blowing process, present a nonconventional fluorescence behaviour, i.e. they are intrinsically fluorescent with a multicolor emission without requiring ex situ traditional fluorescent probes. These foams demonstrate utility for capturing-sensing gaseous formaldehyde (an emblematic indoor air pollutant), as well as for detecting and quantifying various metal ions (Fe2+, Cu2+, Fe3+, Hg2+). They are also able to selectively sense tetracycline antibiotic in a ratiometric way with a high sensitivity. By exploiting the unique multicolor photoluminescent foam properties, a smartphone-compatible device is used for the facile antibiotic quantification. This nonconventional fluorescence behaviour is discussed experimentally and theoretically, and is mainly based on clusteroluminescence originating from multiple hydrogen bonding and hetero-atomic sub-luminophores, thus from aggregation-induced emission luminogens that are naturally present in the foams. This work illustrates that easily accessible non-conventional fluorescent NIPU foams characterized by a modular emission wavelength have an enormous potential for multiple substrates detection and quantification.
Collapse
Affiliation(s)
- Manas Mahapatra
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Liege, Belgium
| | - Maxime Bourguignon
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Liege, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Liege, Belgium
- FRITCO2T Platform, CESAM Research Unit, University of Liege, Liege, Belgium
| | - Marylène Vandevenne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liege, Liege, Belgium
| | - Moreno Galleni
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liege, Liege, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Liege, Belgium
- WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| |
Collapse
|
2
|
Fang Z, Xu H, Xu Q, Meng L, Lu N, Li R, Müller-Buschbaum P, Zhong Q. High Efficiency of Formaldehyde Removal and Anti-bacterial Capability Realized by a Multi-Scale Micro-Nano Channel Structure in Hybrid Hydrogel Coating Cross-Linked on Microfiber-Based Polyurethane. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37429826 DOI: 10.1021/acsami.3c07210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Inspired by the transpiration in the tree stem having a vertical and porous channel structure, high efficiency of formaldehyde removal is realized by the multi-scale micro-nano channel structure in a hybrid P(AAm/DA)-Ag/MgO hydrogel coating cross-linked on microfiber-based polyurethane. The present multi-scale channel structure is formed by a joint effect of directional freezing and redox polymerization as well as nanoparticles-induced porosity. Due to the large number of vertically aligned channels of micrometer size and an embedded porous structure of nanometer size, the specific surface area is significantly increased. Therefore, formaldehyde from solution can be rapidly adsorbed by the amine group in the hydrogels and efficiently degraded by the Ag/MgO nanoparticles. By only immersing in formaldehyde solution (0.2 mg mL-1) for 12 h, 83.8% formaldehyde is removed by the hybrid hydrogels with a multi-scale channel structure, which is 60.8% faster than that observed in hydrogels without any channel structure. After cross-linking the hybrid hydrogels with a multi-scale channel structure to microfiber-based polyurethane and exposing to the formaldehyde vapor atmosphere, 79.2% formaldehyde is removed in 12 h, which is again 11.2% higher than that observed in hydrogels without any channel structure. Unlike the traditional approaches to remove formaldehyde by the light catalyst, no external conditions are required in our present hybrid hydrogel coating, which is very suitable for indoor use. In addition, due to the formation of free radicals by the Ag/MgO nanoparticles, the cross-linked hybrid hydrogel coating on polyurethane synthetic leather also shows good anti-bacterial capability. 99.99% of Staphylococcus aureus can be killed on the surface. Based on the good ability to remove formaldehyde and to kill bacteria, the obtained microfiber-based polyurethane cross-linked with a hybrid hydrogel coating containing a multi-scale channel structure can be used in a broad field of applications, such as furniture and car interior parts, to simultaneously solve the indoor air pollution and hygiene problems.
Collapse
Affiliation(s)
- Zheng Fang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China
| | - Huawei Xu
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - Qiang Xu
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - LiuBang Meng
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - Nan Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Renhong Li
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science & Engineering, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Qi Zhong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Street 1, 85748 Garching, Germany
| |
Collapse
|
3
|
Ou Y, Zhang Z, Tang Z, Yang Z, Zhang Y, Tao L, Wang T, Wang Q, Chen S. High strength, recyclable and shape memory polyhydroxyurethanes with intrinsic fluorescent properties. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Yujing Ou
- College of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 People's Republic of China
| | - Ziming Zhang
- College of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 People's Republic of China
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
| | - Zhangzhang Tang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Zenghui Yang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Liming Tao
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Shoubing Chen
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
4
|
Bourguignon M, Grignard B, Detrembleur C. Water-Induced Self-Blown Non-Isocyanate Polyurethane Foams. Angew Chem Int Ed Engl 2022; 61:e202213422. [PMID: 36278827 DOI: 10.1002/anie.202213422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/18/2022]
Abstract
For 80 years, polyisocyanates and polyols were central building blocks for the industrial fabrication of polyurethane (PU) foams. By their partial hydrolysis, isocyanates release CO2 that expands the PU network. Substituting this toxic isocyanate-based chemistry by a more sustainable variant-that in situ forms CO2 by hydrolysis of a comonomer-is urgently needed for producing greener cellular materials. Herein, we report a facile, up-scalable process, potentially compatible to existing infrastructures, to rapidly prepare water-induced self-blown non-isocyanate polyurethane (NIPU) foams. We show that formulations composed of poly(cyclic carbonate)s and polyamines furnish rigid or flexible NIPU foams by partial hydrolysis of cyclic carbonates in the presence of a catalyst. By utilizing readily available low cost starting materials, this simple but robust process gives access to greener PU foams, expectedly responding to the sustainability demands of many sectors.
Collapse
Affiliation(s)
- Maxime Bourguignon
- Center for Education and Research on Macromolecules(CERM), CESAM Research Unit, University of Liège, Department of Chemistry, Sart-Tilman, B6A, 4000, Liège, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules(CERM), CESAM Research Unit, University of Liège, Department of Chemistry, Sart-Tilman, B6A, 4000, Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules(CERM), CESAM Research Unit, University of Liège, Department of Chemistry, Sart-Tilman, B6A, 4000, Liège, Belgium
| |
Collapse
|
5
|
Quienne B, Pinaud J, Caillol S. Synthesis of hydrophobically modified ethoxylated non-isocyanate urethanes (HENIURs) and their use as rheology additives. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Monie F, Grignard B, Detrembleur C. Divergent Aminolysis Approach for Constructing Recyclable Self-Blown Nonisocyanate Polyurethane Foams. ACS Macro Lett 2022; 11:236-242. [PMID: 35574775 DOI: 10.1021/acsmacrolett.1c00793] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report an approach to fabricate self-blown nonisocyanate polyurethane (NIPU) foams by capitalizing on the divergent chemistries of amines with cyclic carbonates─creating the polymer network─and thiolactone─delivering in situ a thiol that generates the blowing agent (CO2) by reaction with a cyclic carbonate. Multiple linkages (hydroxyurethanes, thioethers, and amides) are created within the polymer network by this domino process. This one-pot methodology furnishes flexible to rigid foams with open-cell morphology at moderate temperature. The foams are easily repurposed into films or structural composites by thermal treatment, showing the first example of recyclable NIPU foams. Remarkably, both the formation and the recycling of the thermoset foams do not necessarily require the use of a catalyst. This facile and robust process is opening new avenues for designing more sustainable PU foams and offers new end-of-life options by facile material repurposing.
Collapse
Affiliation(s)
- Florent Monie
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Sart-Tilman, B6A, 4000 Liège, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Sart-Tilman, B6A, 4000 Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Sart-Tilman, B6A, 4000 Liège, Belgium
| |
Collapse
|