1
|
Song X, Hao C, Li Y, Li Y, Dong H, Wei Q, Wei M, Li H, Zhao L. Chiral inorganic nanomaterials in the tumor microenvironment: A new chapter in cancer therapy. Pharmacol Res 2024; 208:107386. [PMID: 39216840 DOI: 10.1016/j.phrs.2024.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Chirality plays a crucial function in the regulation of normal physiological processes and is widespread in organisms. Chirality can be imparted to nanomaterials, whether they are natural or manmade, through the process of asymmetric assembly and/or grafting of molecular chiral groups or linkers. Chiral inorganic nanomaterials possess unique physical and chemical features that set them apart from regular nanomaterials. They also have the ability to interact with cells and tissues in a specific manner, making them useful in various biomedical applications, particularly in the treatment of tumors. Despite the growing amount of research on chiral inorganic nanomaterials in the tumor microenvironment (TME) and their promising potential applications, there is a lack of literature that comprehensively summarizes the intricate interactions between chiral inorganic nanomaterials and TME. In this review, we introduce the fundamental concept, classification, synthesis methods, and physicochemical features of chiral inorganic nanomaterials. Next, we briefly outline the components of TME, such as T cells, macrophages, dendritic cells, and weak acids, and then discuss the anti-tumor effects of several chiral inorganic nanoparticles targeting these components and their potential for possible application during cancer therapy. Finally, the present challenges faced by chiral inorganic nanomaterials in cancer treatment and their future areas of investigation are disclosed.
Collapse
Affiliation(s)
- Xueyi Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Chenjing Hao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Yao Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Hongzhi Dong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Heran Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
2
|
Sun C, Zhang X, Xie Y, Zhou Y, Gao X. True and False Chirality in Chiral Magnetic Nanoparticles. J Phys Chem Lett 2024; 15:4679-4685. [PMID: 38656159 DOI: 10.1021/acs.jpclett.4c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Determining the true or false chirality of a system is essential for the design of advanced chiral materials and for improving their applications. Typically, a magnetic field would cause false optical activity in the chiral material system, thus confusing the true chirality's influence. Here, we provide a simple way to uncover the true and false chirality in chiral ferrimagnetic nanoparticles (FNPs) by using the gel as a rigid frame. The remnant local magnetic field of the FNP gel can be easily adjusted by an external magnetic field or by controlling the concentration of the FNPs. Moreover, the potential application of the FNP gel is detected by induced magnetic circularly polarized luminescence. This work provides deep insight into the true and false chirality in magnetic nanosystems and offers a strategy to construct new optic elements with an adjustable local magnetic field.
Collapse
Affiliation(s)
- Chao Sun
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Xueyan Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Yuyu Xie
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Yunlong Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
3
|
Kuznetsova V, Coogan Á, Botov D, Gromova Y, Ushakova EV, Gun'ko YK. Expanding the Horizons of Machine Learning in Nanomaterials to Chiral Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308912. [PMID: 38241607 PMCID: PMC11167410 DOI: 10.1002/adma.202308912] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Machine learning holds significant research potential in the field of nanotechnology, enabling nanomaterial structure and property predictions, facilitating materials design and discovery, and reducing the need for time-consuming and labor-intensive experiments and simulations. In contrast to their achiral counterparts, the application of machine learning for chiral nanomaterials is still in its infancy, with a limited number of publications to date. This is despite the great potential of machine learning to advance the development of new sustainable chiral materials with high values of optical activity, circularly polarized luminescence, and enantioselectivity, as well as for the analysis of structural chirality by electron microscopy. In this review, an analysis of machine learning methods used for studying achiral nanomaterials is provided, subsequently offering guidance on adapting and extending this work to chiral nanomaterials. An overview of chiral nanomaterials within the framework of synthesis-structure-property-application relationships is presented and insights on how to leverage machine learning for the study of these highly complex relationships are provided. Some key recent publications are reviewed and discussed on the application of machine learning for chiral nanomaterials. Finally, the review captures the key achievements, ongoing challenges, and the prospective outlook for this very important research field.
Collapse
Affiliation(s)
- Vera Kuznetsova
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Áine Coogan
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Dmitry Botov
- Everypixel Media Innovation Group, 021 Fillmore St., PMB 15, San Francisco, CA, 94115, USA
- Neapolis University Pafos, 2 Danais Avenue, Pafos, 8042, Cyprus
| | - Yulia Gromova
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St., Cambridge, MA, 02138, USA
| | - Elena V Ushakova
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yurii K Gun'ko
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| |
Collapse
|
4
|
Li C, Zhao J, Gao X, Hao C, Hu S, Qu A, Sun M, Kuang H, Xu C, Xu L. Chiral Iron Oxide Supraparticles Enable Enantiomer-Dependent Tumor-Targeted Magnetic Resonance Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2308198. [PMID: 37721365 DOI: 10.1002/adma.202308198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Indexed: 09/19/2023]
Abstract
The chemical, physical and biological effects of chiral nanomaterials have inspired general interest and demonstrated important advantages in fundamental science. Here, chiral iron oxide supraparticles (Fe3 O4 SPs) modified by chiral penicillamine (Pen) molecules with g-factor of ≈2 × 10-3 at 415 nm are fabricated, and these SPs act as high-quality magnetic resonance imaging (MRI) contrast agents. Therein, the transverse relaxation efficiency and T2 -MRI results demonstrated chiral Fe3 O4 SPs have a r2 relaxivity of 157.39 ± 2.34 mM-1 ·S-1 for D-Fe3 O4 SPs and 136.21 ± 1.26 mM-1 ·S-1 for L-Fe3 O4 SPs due to enhanced electronic transition dipole moment for D-Fe3 O4 SPs compared with L-Fe3 O4 SPs. The in vivo MRI results show that D-Fe3 O4 SPs exhibit two-fold lower contrast ratio than L-Fe3 O4 SPs, which enhances targeted enrichment in tumor tissue, such as prostate cancer, melanoma and brain glioma tumors. Notably, it is found that D-Fe3 O4 SPs have 7.7-fold higher affinity for the tumor cell surface receptor cluster-of-differentiation 47 (CD47) than L-Fe3 O4 SPs. These findings uncover that chiral Fe3 O4 SPs act as a highly effective MRI contrast agent for targeting and imaging broad tumors, thus accelerating the practical application of chiral nanomaterials and deepening the understanding of chirality in biological and non-biological environments.
Collapse
Affiliation(s)
- Chen Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoqing Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, and Oujiang Laboratory, Wenzhou, Zhejiang, 325001, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Shudong Hu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
5
|
Wang F, Yue X, Ding Q, Lin H, Xu C, Li S. Chiral inorganic nanomaterials for biological applications. NANOSCALE 2023; 15:2541-2552. [PMID: 36688473 DOI: 10.1039/d2nr05689e] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chiral nanomaterials in biology play indispensable roles in maintaining numerous physiological processes, such as signaling, site-specific catalysis, transport, protection, and synthesis. Like natural chiral nanomaterials, chiral inorganic nanomaterials can also be established with similar size, charge, surface properties, and morphology. However, chiral inorganic nanomaterials usually exhibit extraordinary properties that are different from those of organic materials, such as high g-factor values, broad distribution range, and symmetrical mirror configurations. Because of these unique characteristics, there is great potential for application in the fields of biosensing, drug delivery, early diagnosis, bio-imaging, and disease therapy. Related research is summarized and discussed in this review to showcase the bio-functions and bio-applications of chiral inorganic nanomaterials, including the construction methods, classification and properties, and biological applications of chiral inorganic nanomaterials. Moreover, the deficiencies in existing studies are noted, and future development is prospected. This review will provide helpful guidance for constructing chiral inorganic nanomaterials with specific bio-functions for problem solving in living systems.
Collapse
Affiliation(s)
- Fang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Xiaoyong Yue
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Qi Ding
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
6
|
Spaeth P, Adhikari S, Lahabi K, Baaske MD, Wang Y, Orrit M. Imaging the Magnetization of Single Magnetite Nanoparticle Clusters via Photothermal Circular Dichroism. NANO LETTERS 2022; 22:3645-3650. [PMID: 35420830 PMCID: PMC9101077 DOI: 10.1021/acs.nanolett.2c00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/12/2022] [Indexed: 05/30/2023]
Abstract
Magnetic imaging is a versatile tool in biological and condensed-matter physics. Existing magnetic imaging techniques either require demanding experimental conditions which restrict the range of their applications or lack the spatial resolution required for single-particle measurements. Here, we combine photothermal (PT) microscopy with magnetic circular dichroism (MCD) to develop a versatile magnetic imaging technique using visible light. Unlike most magnetic imaging techniques, photothermal magnetic circular dichroism (PT MCD) microscopy works particularly well for single nanoparticles immersed in liquids. As a proof of principle, we demonstrate magnetic CD imaging of superparamagnetic magnetite nanoparticulate clusters immersed in microscope immersion oil. The sensitivity of our method allowed us to probe the magnetization curve of single ∼400-nm-diameter magnetite nanoparticulate clusters.
Collapse
Affiliation(s)
- Patrick Spaeth
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Subhasis Adhikari
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Kaveh Lahabi
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Martin Dieter Baaske
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Yonghui Wang
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
- School
of Mechatronics Engineering, Harbin Institute
of Technology, Harbin 150001, P. R. China
| | - Michel Orrit
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
7
|
Lin JX, Chen YR, Sun SJ, Hu CK, Chen BJ, Hsu HS. Field-Free Magnetoplasmon-Induced Ultraviolet Circular Dichroism Switching in Premagnetized Magnetic Nanowires. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11895-11902. [PMID: 35191691 DOI: 10.1021/acsami.1c23505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Broadband modulation of magnetic circular dichroism (MCD) using a relatively low magnetic field or by producing a field-free magnetoplasmonic effect in the remnant magnetic state was achieved by the integration of the noble metals (NMs) Au and Ag and the perpendicular magnetic anisotropy of Co with ZnO nanowires (NWs) used as the template. The samples containing NMs revealed MCD sign reversals and enhancements when compared with the original Co/ZnO NWs. The magnetoplasmonic effect of Au close to the visible light spectrum could induce the CD change in the visible region. Notably, the ultraviolet (UV) CD in Ag/Co/ZnO NWs is 12.5 times larger under a magnetic field (∼0.2 T) and 10 times greater in the remnant state (field-free) than those of the original Co/ZnO NWs because of the magnetoplasmonic effect of Ag in the UV spectrum. These results are attributable to the coupling of the remnant magnetic state of Co magnetization, the magnetoplasmons of the NMs, and the excitons of the ZnO NWs. The findings are potentially applicable in magneto-optical recording, biosensing, and energy contexts involving magnetoplasmonic functionalization.
Collapse
Affiliation(s)
- Jun-Xiao Lin
- Department of Applied Physics, National Pingtung University, 4-18, Minsheng Road, Pingtung 90044, Taiwan, ROC
| | - Yu-Ren Chen
- Department of Applied Physics, National Pingtung University, 4-18, Minsheng Road, Pingtung 90044, Taiwan, ROC
| | - Shih-Jye Sun
- Department of Applied Physics, National University of Kaohsiung, 700, Kaohsiung University Road, Kaohsiung 81148, Taiwan, ROC
| | - Chun-Kai Hu
- Department of Applied Physics, National Pingtung University, 4-18, Minsheng Road, Pingtung 90044, Taiwan, ROC
| | - Bo-Jun Chen
- Department of Applied Physics, National Pingtung University, 4-18, Minsheng Road, Pingtung 90044, Taiwan, ROC
| | - Hua-Shu Hsu
- Department of Applied Physics, National Pingtung University, 4-18, Minsheng Road, Pingtung 90044, Taiwan, ROC
| |
Collapse
|