1
|
Zhong K, Zhang Z, Cheng W, Liu G, Zhang X, Zhang J, Sun S, Wang B. Photodynamic O 2 Economizer Encapsulated with DNAzyme for Enhancing Mitochondrial Gene-Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2302495. [PMID: 38056018 DOI: 10.1002/adhm.202302495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Emerging research suggests that mitochondrial DNA is a potential target for cancer treatment. However, achieving precise delivery of deoxyribozymes (DNAzymes) and combining photodynamic therapy (PDT) and DNAzyme-based gene silencing together for enhancing mitochondrial gene-photodynamic synergistic therapy remains challenging. Accordingly, herein, intelligent supramolecular nanomicelles are constructed by encapsulating a DNAzyme into a photodynamic O2 economizer for mitochondrial NO gas-enhanced synergistic gene-photodynamic therapy. The designed nanomicelles demonstrate sensitive acid- and red-light sequence-activated behaviors. After entering the cancer cells and targeting the mitochondria, these micelles will disintegrate and release the DNAzyme and Mn (II) porphyrin in the tumor microenvironment. Mn (II) porphyrin acts as a DNAzyme cofactor to activate the DNAzyme for the cleavage reaction. Subsequently, the NO-carrying donor is decomposed under red light irradiation to generate NO that inhibits cellular respiration, facilitating the conversion of more O2 into singlet oxygen (1 O2 ) in the tumor cells, thereby significantly enhancing the efficacy of PDT. In vitro and in vivo experiments reveal that the proposed system can efficiently target mitochondria and exhibits considerable antitumor effects with negligible systemic toxicity. Thus, this study provides a useful conditional platform for the precise delivery of DNAzymes and a novel strategy for activatable NO gas-enhanced mitochondrial gene-photodynamic therapy.
Collapse
Affiliation(s)
- Kaipeng Zhong
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810008, China
| | - Zefan Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wenyuan Cheng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Xuan Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
2
|
Li H, Zhang J, Deng X, Wang Y, Meng G, Liu R, Huang J, Tu M, Xu C, Peng Y, Wang B, Hou Y. Structure and Defect Engineering Synergistically Boost High Solar-to-Chemical Conversion Efficiency of Cerium oxide/Au Hollow Nanomushrooms for Nitrogen Photofixation. Angew Chem Int Ed Engl 2024; 63:e202316384. [PMID: 38009454 DOI: 10.1002/anie.202316384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/28/2023]
Abstract
Photocatalytic nitrogen fixation using solar illumination under ambient conditions is a promising strategy for production of the indispensable chemical NH3 . However, due to the catalyst's limitations in solar energy utilization, loss of hot electrons during transfer, and low nitrogen adsorption and activation capacity, the unsatisfactory solar-to-chemical conversion (SCC) efficiencies of most photocatalysts limit their practical applications. Herein, cerium oxide nanosheets with abundant strain-VO defects were anchored on Au hollow nanomushroom through atomically sharp interfaces to construct a novel semiconductor/plasmonic metal hollow nanomushroom-like heterostructure (denoted cerium oxide-AD/Au). Plasmonic Au extended the absorption of light from the visible to the second near-infrared region. The superior interface greatly enhanced the transfer efficiency of hot electrons. Abundant strain-VO defects induced by interfacial compressive strain promoted adsorption and in situ activation of nitrogen, and such synergistic promotion of strain and VO defects was further confirmed by density functional theory calculations. The judicious structural and defect engineering co-promoted the efficient nitrogen photofixation of the cerium oxide-AD/Au heterostructures with a SCC efficiency of 0.1 % under simulated AM 1.5G solar illumination, which is comparable to the average solar-to-biomass conversion efficiency of natural photosynthesis by typical plants, thus exhibiting significant potential as a new candidate for artificial photosynthesis.
Collapse
Affiliation(s)
- Hua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Junwei Zhang
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xia Deng
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yantao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Genping Meng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ruitong Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Junfeng Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Mudong Tu
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yong Peng
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKLMMD), School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107, China
| |
Collapse
|
3
|
Liu Y, Huang Y, Lu P, Ma Y, Xiong L, Zhang X, Yin Z, Xu H, Nie Y, Luo J, Xiong Z, Liang X. Manganese Dioxide/Gold-based Active Tumor Targeting Nanoprobes for Enhancing Photodynamic and Low-Temperature-Photothermal Combination Therapy in Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54207-54220. [PMID: 37974457 DOI: 10.1021/acsami.3c06535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Tumor drug resistance caused by the tumor microenvironment is an extremely difficult problem for researchers to solve. Nanoplatforms that integrate diagnosis and treatment have great advantages in tumor treatment, but the design and synthesis of simple and efficient nanoplatforms still face tremendous challenges. In this study, a novel Mn/Au@ir820/GA-CD133 nanoprobe was developed. The manganese dioxide/gold particles were prepared by coprecipitation/assembly, chemically coupled with CD133 antibody, and finally loaded with the photosensitive drug IR820 and the heat shock protein inhibitor Ganetespib. The nanoprobe demonstrated good tumor-targeting ability, increased the level of singlet oxygen produced from laser irradiation by effectively alleviating tumor hypoxia, and decreased the threshold of heat tolerance by downregulating the expression of HSP90 in tumor tissues. This nanoprobe successfully inhibited the growth and progression of tumor tissues in a tumor-bearing mouse model by improving the effectiveness of photodynamic and low-temperature photothermal combination therapy.
Collapse
Affiliation(s)
- Yanyan Liu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yue Huang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ping Lu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Yifei Ma
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Lingyi Xiong
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Xiangchen Zhang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Zhucheng Yin
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Hongli Xu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Yanli Nie
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Jing Luo
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhiguo Xiong
- Department of Oncology Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| | - Xinjun Liang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China
| |
Collapse
|
4
|
Ryu HJ, Kim KT, Lee WK, Lee JS. Unveiling the Role of Precursors in the Byproduct Formation of AgCl-Replicated Bimetallic Nanostructures and Their Stability-Dependent Photothermal Properties. ACS OMEGA 2023; 8:25506-25514. [PMID: 37483246 PMCID: PMC10357579 DOI: 10.1021/acsomega.3c03096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023]
Abstract
AgCl nanomaterials recently attracted scientific interest as useful structural building blocks for producing metallic nanomaterials owing to their facile synthesis, controllable morphology, and ease of removal under ambient conditions. However, their complex chemical reactivity has primarily been studied in association with water solubility or reducibility. This study investigates the pivotal role of precursor ligands in the photochemical synthesis of metallic cubic mesh nanostructures on the AgCl templates. The side reactions between AgCl and Au precursors with different ligands are thoroughly discussed along with their influence on the byproduct formation and the structural stability of the resulting metallic nanostructures. Importantly, we introduce for the first time the partial destruction of AgCl and the formation of undesirable byproducts caused by the presence of highly oxidizing and Cl-containing AuCl4-. In addition, a synthetic route for producing highly pure and stable metallic nanostructures using a halogen-free Au precursor or Pt-priming is proposed. Further, the photothermal properties of these replicated metallic nanostructures are presented as a new evaluation tool for analyzing their overall structural stability. Discovering the role of precursor ligands in the reaction system will prove useful as a guide for the synthesis of functional noble metal nanomaterials using silver halide templates.
Collapse
|
5
|
Shiraishi Y, Shimabukuro Y, Shima K, Ichikawa S, Tanaka S, Hirai T. Sunlight-Driven Generation of Hypochlorous Acid on Plasmonic Au/AgCl Catalysts in Aerated Chloride Solution. JACS AU 2023; 3:1403-1412. [PMID: 37234114 PMCID: PMC10207101 DOI: 10.1021/jacsau.3c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
HClO is typically manufactured from Cl2 gas generated by the electrochemical oxidation of Cl- using considerable electrical energy with a large concomitant emission of CO2. Therefore, renewable energy-driven HClO generation is desirable. In this study, we developed a strategy for stable HClO generation by sunlight irradiation of a plasmonic Au/AgCl photocatalyst in an aerated Cl- solution at ambient temperature. Plasmon-activated Au particles by visible light generate hot electrons, which are consumed by O2 reduction, and hot holes, which oxidize the lattice Cl- of AgCl adjacent to the Au particles. The formed Cl2 is disproportionated to afford HClO, and the removed lattice Cl- are compensated by the Cl- in the solution, thus promoting a catalytic HClO generation cycle. A solar-to-HClO conversion efficiency of ∼0.03% was achieved by simulated sunlight irradiation, where the resultant solution contained >38 ppm (>0.73 mM) of HClO and exhibited bactericidal and bleaching activities. The strategy based on the Cl- oxidation/compensation cycles will pave the way for sunlight-driven clean, sustainable HClO generation.
Collapse
Affiliation(s)
- Yasuhiro Shiraishi
- Research
Center for Solar Energy Chemistry and Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka University, Suita 565-0871, Japan
| | - Yoshifumi Shimabukuro
- Research
Center for Solar Energy Chemistry and Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Kaho Shima
- Research
Center for Solar Energy Chemistry and Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Satoshi Ichikawa
- Research
Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki 567-0047, Japan
| | - Shunsuke Tanaka
- Department
of Chemical, Energy, and Environmental Engineering, Kansai University, Suita 564-8680, Japan
| | - Takayuki Hirai
- Research
Center for Solar Energy Chemistry and Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| |
Collapse
|
6
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
7
|
Research Progress of Tungsten Oxide-Based Catalysts in Photocatalytic Reactions. Catalysts 2023. [DOI: 10.3390/catal13030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Photocatalysis technology is a potential solution to solve the problem of environmental pollution and energy shortage, but its wide application is limited by the low efficiency of solar energy conversion. As a non-toxic and inexpensive n-type semiconductor, WO3 can absorb approximately 12% of sunlight which is considered one of the most attractive photocatalytic candidates. However, the narrow light absorption range and the high recombination rate of photogenerated electrons and holes restrict the further development of WO3-based catalysts. Herein, the studies on preparation and modification methods such as doping element, regulating defects and constructing heterojunctions to enlarge the range of excitation light to the visible region and slow down the recombination of carriers on WO3-based catalysts so as to improve their photocatalytic performance are reviewed. The mechanism and application of WO3-based catalysts in the dissociation of water, the degradation of organic pollutants, as well as the hydrogen reduction of N2 and CO2 are emphatically investigated and discussed. It is clear that WO3-based catalysts will play a positive role in the field of future photocatalysis. This paper could also provide guidance for the rational design of other metallic oxide (MOx) catalysts for the increasing conversion efficiency of solar energy.
Collapse
|
8
|
Tan Y, Khan HM, Sheikh BA, Sun H, Zhang H, Chen J, Huang D, Chen X, Zhou C, Sun J. Recent advances in 2D material-based phototherapy. Front Bioeng Biotechnol 2023; 11:1141631. [PMID: 36937746 PMCID: PMC10020212 DOI: 10.3389/fbioe.2023.1141631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Phototherapy, which generally refers to photothermal therapy (PTT) and photodynamic therapy (PDT), has received significant attention over the past few years since it is non-invasive, has effective selectivity, and has few side effects. As a result, it has become a promising alternative to traditional clinical treatments. At present, two-dimensional materials (2D materials) have proven to be at the forefront of the development of advanced nanomaterials due to their ultrathin structures and fascinating optical properties. As a result, much work has been put into developing phototherapy platforms based on 2D materials. This review summarizes the current developments in 2D materials beyond graphene for phototherapy, focusing on the novel approaches of PTT and PDT. New methods are being developed to go above and beyond conventional treatment to fully use the potential of 2D materials. Additionally, the efficacy of cutting-edge phototherapy is assessed, and the existing difficulties and future prospects of 2D materials for phototherapy are covered.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Sun
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Hui Zhang
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Chen
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinmei Chen
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Jianxun Sun
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Yu Q, Zhou J, Song J, Zhou H, Kang B, Chen HY, Xu JJ. A Cascade Nanoreactor of Metal-Protein-Polyphenol Capsule for Oxygen-Mediated Synergistic Tumor Starvation and Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206592. [PMID: 36437115 DOI: 10.1002/smll.202206592] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Starvation therapy kills tumor cells via consuming glucose to cut off their energy supply. However, since glucose oxidase (GOx)-mediated glycolysis is oxygen-dependent, the cascade reaction based on GOx faces the challenge of a hypoxic tumor microenvironment. By decomposition of glycolysis production of H2 O2 into O2 , starvation therapy can be enhanced, but chemodynamic therapy is limited. Here, a close-loop strategy for on demand H2 O2 and O2 delivery, release, and recycling is proposed. The nanoreactor (metal-protein-polyphenol capsule) is designed by incorporating two native proteins, GOx and hemoglobin (Hb), in polyphenol networks with zeolitic imidazolate framework as sacrificial templates. Glycolysis occurs in the presence of GOx with O2 consumption and the produced H2 O2 reacts with Hb to produce highly cytotoxic hydroxyl radicals (•OH) and methemoglobin (MHb) (Fenton reaction). Benefiting from the different oxygen carrying capacities of Hb and MHb, oxygen on Hb is rapidly released to supplement its consumption during glycolysis. Glycolysis and Fenton reactions are mutually reinforced by oxygen supply, consuming more glucose and producing more hydroxyl radicals and ultimately enhancing both starvation therapy and chemodynamic therapy. This cascade nanoreactor exhibits high efficiency for tumor suppression and provides an effective strategy for oxygen-mediated synergistic starvation therapy and chemodynamic therapy.
Collapse
Affiliation(s)
- Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jie Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Juan Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
10
|
Chen L, Huang J, Li X, Huang M, Zeng S, Zheng J, Peng S, Li S. Progress of Nanomaterials in Photodynamic Therapy Against Tumor. Front Bioeng Biotechnol 2022; 10:920162. [PMID: 35711646 PMCID: PMC9194820 DOI: 10.3389/fbioe.2022.920162] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is an advanced therapeutic strategy with light-triggered, minimally invasive, high spatiotemporal selective and low systemic toxicity properties, which has been widely used in the clinical treatment of many solid tumors in recent years. Any strategies that improve the three elements of PDT (light, oxygen, and photosensitizers) can improve the efficacy of PDT. However, traditional PDT is confronted some challenges of poor solubility of photosensitizers and tumor suppressive microenvironment. To overcome the related obstacles of PDT, various strategies have been investigated in terms of improving photosensitizers (PSs) delivery, penetration of excitation light sources, and hypoxic tumor microenvironment. In addition, compared with a single treatment mode, the synergistic treatment of multiple treatment modalities such as photothermal therapy, chemotherapy, and radiation therapy can improve the efficacy of PDT. This review summarizes recent advances in nanomaterials, including metal nanoparticles, liposomes, hydrogels and polymers, to enhance the efficiency of PDT against malignant tumor.
Collapse
Affiliation(s)
- Lei Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiahui Huang
- Department of Anesthesiology, Huizhou Central People’s Hospital, Huizhou, China
| | - Xiaotong Li
- Guangzhou Medical University, Guangzhou, China
| | | | | | - Jiayi Zheng
- Guangzhou Medical University, Guangzhou, China
| | - Shuyi Peng
- Guangzhou Medical University, Guangzhou, China
| | - Shiying Li
- Key Laboratory of Molecular Target and Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shiying Li,
| |
Collapse
|