1
|
Wang Z, Gao Q, Yao K, Ran W, Li Y, Jin Y, Shao B, Sun J. Seedless and Surfactant-Free Synthesis of Polyhedron Gold Nanocrystals Enclosed by High-Index Facets for Enhanced Electrochemical Detection of Benzoyl Peroxide in Flour. Molecules 2024; 29:5691. [PMID: 39683850 DOI: 10.3390/molecules29235691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Polyhedron gold nanocrystals enclosed by high-index facets (HIF-Au NCs) are in high demand but are very difficult to prepare. To address this issue, we presented a simple, seedless method for synthesizing uniform HIF-Au NCs in an aqueous solution, which remarkably reduced the synthesis difficulty. Interestingly, the protonated N2H4 which served as both the reducing and capping agent played a crucial role in modulating the kinetic growth of the HIF-Au NCs. The resulting HIF-Au NCs exhibited distinct electronic oxidation inertness toward alcohol but demonstrated exceptional activity in the electrocatalytic oxidation of peroxides. To demonstrate their sensing capabilities, an electrode decorated with HIF-Au NCs was used to selectively detect benzoyl peroxide (BPO) in flour. BPO is a prohibited whitening agent that may be illegally added to flour and other products, posing potential health risks. The results demonstrate that this assay offers a promising method for the sensitive and selective detection of BPO. In conclusion, this research provides a straightforward pathway for obtaining HIF-Au NCs and further demonstrates their use in electronic sensing. It is expected that HIF-Au NCs will serve as a powerful tool in plasmon-enhanced spectroscopies, catalysis, and sensing applications.
Collapse
Affiliation(s)
- Zixuan Wang
- School of Public Health, Capital Medical University, Beijing 100054, China
| | - Qianlong Gao
- School of Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Kai Yao
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Wei Ran
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100084, China
| | - Ying Li
- School of Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Yushen Jin
- School of Public Health, Capital Medical University, Beijing 100054, China
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Bing Shao
- School of Public Health, Capital Medical University, Beijing 100054, China
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Jiefang Sun
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| |
Collapse
|
2
|
Ehrnst Y, Alijani H, Bentley C, Sherrell PC, Murdoch BJ, Yeo LY, Rezk AR. UNLEASH: Ultralow Nanocluster Loading of Pt via Electro-Acoustic Seasoning of Heterocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409495. [PMID: 39588884 DOI: 10.1002/adma.202409495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/15/2024] [Indexed: 11/27/2024]
Abstract
The shift toward sustainable energy has fueled the development of advanced electrocatalysts to enable green fuel production and chemical synthesis. To date, no material outperforms Pt-group catalysts for key electrocatalytic reactions, necessitating advanced catalysts that minimize use of these rare and expensive constituents (i.e., Pt) to reduce cost without sacrificing activity. Whilst a myriad of routes involving co-synthesis of Pt with other elements have been reported, the Pt is often buried within the bulk of the composite, rendering a large proportion of it inaccessible to the interfacial electrocatalytic reaction. Surface decoration of Pt on arbitrary substrates is therefore desirable to maximize catalytic activity; nevertheless, Pt electrodeposition suffers from clustering and ripening effects that result in large (⌀ 0.1 - 1 μ m $\diameter \ \!0.1-1\ \umu{\rm m}$ ) aggregates that hinder electrocatalytic activity. Herein, an unconventional synthesis method is reported that utilizes high-frequency (10 MHz) acoustic waves to electrochemically 'season' a gold working electrode with an ultralow loading of Pt nanoclusters. The UNLEASH platform is shown to facilitate high-density dispersion of nanometer-order clusters at the bimetallic interface to enable superior atomic utilization of Pt. This is exemplified by its utility for methanol oxidation reaction (MOR), wherein a mass activity of 5.28 Amg Pt - 1 ${\rm mg}_{\rm Pt}^{-1}$ is obtained, outperforming all other Au/Pt bimetallic electrocatalysts reported to date.
Collapse
Affiliation(s)
- Yemima Ehrnst
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Hossein Alijani
- University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Cameron Bentley
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Peter C Sherrell
- School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Billy J Murdoch
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC, 3001, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
3
|
Wang L, Ore RM, Jayamaha PK, Wu ZP, Zhong CJ. Density functional theory based computational investigations on the stability of highly active trimetallic PtPdCu nanoalloys for electrochemical oxygen reduction. Faraday Discuss 2023; 242:429-442. [PMID: 36173024 DOI: 10.1039/d2fd00101b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Activity, cost, and durability are the trinity of catalysis research for the electrochemical oxygen reduction reaction (ORR). While studies towards increasing activity and reducing cost of ORR catalysts have been carried out extensively, much effort is needed in durability investigation of highly active ORR catalysts. In this work, we examined the stability of a trimetallic PtPdCu catalyst that has demonstrated high activity and incredible durability during ORR using density functional theory (DFT) based computations. Specifically, we studied the processes of dissolution/deposition and diffusion between the surface and inner layer of Cu species of Pt20Pd20Cu60 catalysts at electrode potentials up to 1.2 V to understand their role towards stabilizing Pt20Pd20Cu60 catalysts. The results show there is a dynamic Cu surface composition range that is dictated by the interplay of the four processes, dissolution, deposition, diffusion from the surface to inner layer, and diffusion from the inner layer to the surface of Cu species, in the stability and observed oscillation of lattice constants of Cu-rich PtPdCu nanoalloys.
Collapse
Affiliation(s)
- Lichang Wang
- School of Chemical and Biomolecular Sciences and the Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Rotimi M Ore
- School of Chemical and Biomolecular Sciences and the Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Peshala K Jayamaha
- School of Chemical and Biomolecular Sciences and the Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Zhi-Peng Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
4
|
Battistel D, Citron A, Veclani D, Daniele S. Pt Nanoelectrodes Sealed in Quartz Capillaries Modified with Underpotential‐Deposited Bismuth for Formic Acid Electrooxidation. ChemElectroChem 2022. [DOI: 10.1002/celc.202200754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dario Battistel
- Ca' Foscari University of Venice: Universita Ca' Foscari Environmental Sciences, Informatics and Statistics Venice ITALY
| | - Alberto Citron
- Ca' Foscari University of Venice: Universita Ca' Foscari Molecular Sciences and Nanosystems Venice ITALY
| | - Daniele Veclani
- CNR: Consiglio Nazionale delle Ricerche The Institute of Organic Synthesis and Photoreactivity (ISOF) ITALY
| | - Salvatore Daniele
- Ca'Foscari University of Venice: Universita Ca' Foscari Scienze Molecolari e Nanosistemi Via Torino, 155 30172 Venice ITALY
| |
Collapse
|
5
|
McGuire SC, Wesley W, Sasaki K, Tong X, Wong SS. Yttrium-based Double Perovskite Nanorods for Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30914-30926. [PMID: 35759361 DOI: 10.1021/acsami.2c07377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, we investigate the effect of the chemical composition of double perovskite nanorods on their versatile electrocatalytic activity not only as supports for the oxidation of small organic molecules but also as catalysts for the oxygen evolution reaction. Specifically, Y2CoMnO6 and Y2NiMnO6 nanorods with average diameters of 300 nm were prepared by a two-step hydrothermal method, in which the individual effects of synthetic parameters, such as the pH, annealing temperature, and precursor ratios on both the composition and morphology, were systematically investigated. When used as supports for Pt nanoparticles, Y2CoMnO6/Pt catalysts exhibited an electrocatalytic activity for the methanol oxidation reaction, which is 2.1 and 1.3 times higher than that measured for commercial Pt/C and Y2NiMnO6/Pt, respectively. Similarly, the Co-based catalyst support material displayed an ethanol oxidation activity, which is 2.3 times higher than both Pt/C and Y2NiMnO6/Pt. This clear enhancement in the activity for Y2CoMnO6 can largely be attributed to strong metal-support interactions, as evidenced by a downshift in the binding energy of the Pt 4f bands, measured by X-ray photoelectron spectroscopy (XPS), which is often correlated not only with a downshift in the d-band center but also to a decreased adsorption of poisoning adsorbates. Moreover, when used as catalysts for the oxygen evolution reaction, Y2CoMnO6 displayed a much greater activity as compared with Y2NiMnO6. This behavior can largely be attributed not only to a preponderance of comparatively more favorable oxidation states and electronic configurations but also to the formation of an active layer on the surface of the Y2CoMnO6 catalyst, which collectively gives rise to improved performance metrics and greater stability as compared with both IrO2 and Y2NiMnO6. Overall, these results highlight the importance of both the chemical composition and the electronic structure of double perovskites, especially when utilized in multifunctional roles as either supports or catalysts.
Collapse
Affiliation(s)
- Scott C McGuire
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Weiqiao Wesley
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Kotaro Sasaki
- Chemistry Division, Brookhaven National Laboratory, Building 555, Upton, New York 11973, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Building 735, Upton, New York 11973, United States
| | - Stanislaus S Wong
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
6
|
Li Y, Yan Y, He Y, Du S. Catalyst Electrodes with PtCu Nanowire Arrays In Situ Grown on Gas Diffusion Layers for Direct Formic Acid Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11457-11464. [PMID: 35201741 PMCID: PMC9007414 DOI: 10.1021/acsami.1c24010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The excellent performance and safety of direct formic acid fuel cells (DFAFCs) promote them as potential power sources for portable electronic devices. However, their real application is still highly challenging due to the poor power performance and high complexity in the fabrication of catalyst electrodes. In this work, we demonstrate a new gas diffusion electrode (GDE) with ultrathin PtCu alloy nanowire (NW) arrays in situ grown on the carbon paper gas diffusion layer surface. The growing process is achieved by a facile template- and surfactant-free self-growth assisted reduction method at room temperature. A finely controlled ion reduction process tunes the nucleation and crystal growth of Pt and Cu leading to the formation of alloy nanowires with an average diameter of about 4 nm. The GDE is directly used as the anode for DFAFCs. The results in the half-cell GDE measurement indicate that the introduction of Cu in PtCu NWs boosts the direct oxidation pathway for formic acid. The Pt3Cu1 NW GDE shows a 2.4-fold higher power density compared to the Pt NW GDE in the membrane electrode assembly test in single cells.
Collapse
Affiliation(s)
- Yang Li
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Yichang Yan
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Yanping He
- School
of Chemical Engineering, Kunming University
of Science and Technology, Kunming 650504, China
| | - Shangfeng Du
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|