1
|
Lee C, Park J, Choi D. Enhancing Thermoelectrical Properties of Silver-Nanowire-Embedded Heatable Textiles via Sputter-Mediated Nanowire Structural Modulation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5514. [PMID: 39597341 PMCID: PMC11595920 DOI: 10.3390/ma17225514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
This study addresses the fabrication of flexible, heatable fabrics via the integration of globally interconnected silver nanowires (Ag NWs) with sputter-deposited silver atoms. Conventional heatable fabrics, which utilize macroscale or nanoscale conductive wires, often face challenges in balancing flexibility, comfort, and structural durability. The proposed method leverages the advantages of nanoscale metallic wires and vacuum-based sputtering, maintaining fabric flexibility while enhancing heating efficiency. The fabrication process involves dip-coating polyester fabric with Ag NWs, followed by sputter deposition to modulate the nanowire morphology, thereby improving key electrical properties such as wire resistance and contact resistance between wires. The experimental results demonstrate that sputter-deposited Ag NW fabrics exhibit significantly enhanced heating capability compared to undeposited, otherwise identical counterparts. Further, the fabrics maintain their heating characteristics under repeated mechanical bending and prolonged electrical stress, highlighting their potential for use in wearable electronic applications. This approach offers a promising solution to the limitations of current heatable textile technologies, providing a pathway for the development of comfortable, efficient, and durable heatable fabrics.
Collapse
Affiliation(s)
| | | | - Dooho Choi
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea; (C.L.); (J.P.)
| |
Collapse
|
2
|
Wu S, Zhao T, Zhu Y, Paulino GH. Modular multi-degree-of-freedom soft origami robots with reprogrammable electrothermal actuation. Proc Natl Acad Sci U S A 2024; 121:e2322625121. [PMID: 38709915 PMCID: PMC11098090 DOI: 10.1073/pnas.2322625121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/12/2024] [Indexed: 05/08/2024] Open
Abstract
Soft robots often draw inspiration from nature to navigate different environments. Although the inching motion and crawling motion of caterpillars have been widely studied in the design of soft robots, the steering motion with local bending control remains challenging. To address this challenge, we explore modular origami units which constitute building blocks for mimicking the segmented caterpillar body. Based on this concept, we report a modular soft Kresling origami crawling robot enabled by electrothermal actuation. A compact and lightweight Kresling structure is designed, fabricated, and characterized with integrated thermal bimorph actuators consisting of liquid crystal elastomer and polyimide layers. With the modular design and reprogrammable actuation, a multiunit caterpillar-inspired soft robot composed of both active units and passive units is developed for bidirectional locomotion and steering locomotion with precise curvature control. We demonstrate the modular design of the Kresling origami robot with an active robotic module picking up cargo and assembling with another robotic module to achieve a steering function. The concept of modular soft robots can provide insight into future soft robots that can grow, repair, and enhance functionality.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Tuo Zhao
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Glaucio H. Paulino
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544
- Princeton Materials Institute, Princeton University, Princeton, NJ08544
| |
Collapse
|
3
|
Zhang Z, Zhang X, Huang W, Zheng X, Ding B, Wang X. Breathable and wearable graphene/waterborne polyurethane coated regenerated polyethylene terephthalate fabrics for motion sensing and thermal therapy. DISCOVER NANO 2024; 19:61. [PMID: 38573408 PMCID: PMC10994883 DOI: 10.1186/s11671-024-04004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
The functional utilization of recycled polymers has emerged as a current prominent and timely subject. Flexible wearable devices with high sensitivity to conductivity have garnered significant attention in the fields of human healthcare monitoring and personal heat management. One significant obstacle that needs to be addressed is the simultaneous maintenance of both sensing functionality and durability in composite fabrics. In this paper, a collection of durable, breathable, and flexible smart fabric was produced using the scratch coating method. The fabrics were created by utilizing a regenerated polyethylene terephthalate fabric as a base material, incorporating graphene microsheets (G) as a conductive agent, and applying a waterborne polyurethane layer as a surface protective coating. Furthermore, an investigation was conducted to assess their sensing performance and electrothermal performance. The composite fabric exhibits significant advantages in terms of high conductivity (592 S/m), wide strain range, high sensitivity (Gauge factor = 6.04) and fantabulous dynamic stability (2000 cycles) at a mass ratio of Graphene/WPU loading of 8:2. These sensors were successfully utilized to monitor various degrees of real-time human body movements, ranging from significant deformation bending of elbows to slight deformation swallowing. Furthermore, the sensors also exhibit a significant electric heating effect. Specifically, when a voltage of 10 V is applied, the sensors can reach a steady state temperature of 53.3 °C within a mere 30 s. This discovery holds potential for the development of wearable heaters that can be used for on-demand thermal therapy, functional protective clothing, and medical electric heating wearables.
Collapse
Affiliation(s)
- Zhou Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312030, People's Republic of China
| | - Xuzhen Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Wenjian Huang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312030, People's Republic of China
| | - Xiong Zheng
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312030, People's Republic of China
| | - Bona Ding
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312030, People's Republic of China
| | - Xiuhua Wang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
4
|
Shukla D, Wang H, Awartani O, Dickey MD, Zhu Y. Surface Embedded Metal Nanowire-Liquid Metal-Elastomer Hybrid Composites for Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14183-14197. [PMID: 38457372 DOI: 10.1021/acsami.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Both liquid metal (LM) and metallic filler-based conductive composites are promising stretchable conductors. LM alloys exhibit intrinsically high deformability but present challenges for patterning on polymeric substrates due to high surface tension. On the other hand, conductive composites comprising metallic fillers undergo considerable decrease in electrical conductivity under mechanical deformation. To address the challenges, we present silver nanowire (AgNW)-LM-elastomer hybrid composite films, where AgNWs and LM are embedded below the surface of an elastomeric matrix, using two fabrication approaches, sequential and mixed. We investigate and understand the process-structure-property relationship of the AgNW-LM-elastomer hybrid composites fabricated using two approaches. Different weight ratios of AgNWs and LM particles provide tunable electrical conductivity. The hybrid composites show more stable electromechanical performance than the composites with AgNWs alone. In particular, 1:2.4 (AgNW:LMP w/w) sequential hybrid composite shows electromechanical stability similar to that of the LM-elastomer composite, with a resistance increase of 2.04% at 90% strain. The sequential approach is found to form AgIn2 intermetallic compounds which along with Ga-In bonds, imparts large deformability to the sequential hybrid composite as well as mechanical robustness against scratching, cutting, peeling, and wiping. To demonstrate the application of the hybrid composite for stretchable electronics, a laser patterned stretchable heater on textile and a stretchable circuit including a light-emitting diode are fabricated.
Collapse
Affiliation(s)
- Darpan Shukla
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hongyu Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Omar Awartani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Junge T, Brendgen R, Grassmann C, Weide T, Schwarz-Pfeiffer A. Development and Characterization of Hybrid, Temperature Sensing and Heating Yarns with Color Change. SENSORS (BASEL, SWITZERLAND) 2023; 23:7076. [PMID: 37631613 PMCID: PMC10458216 DOI: 10.3390/s23167076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
A person's body temperature is an important indicator of their health status. A deviation of that temperature by just 2 °C already has or can lead to serious consequences, such as fever or hypothermia. Hence, the development of a temperature-sensing and heatable yarn is an important step toward enabling and improving the monitoring and regulation of a person's body temperature. This technology offers benefits to several industries, such as health care and sports. This paper focuses on the characterization and development of a hybrid yarn, which can measure and visualize temperature changes through a thermoresistive and thermochromic effect. Moreover, the yarn is able to serve as a flexible heating element by connecting to a power source. The structure of the yarn is designed in three layers. Each layer and component ensures the functionality and flexibility of the yarn and additional compatibility with further processing steps. A flexible stainless steel core was used as the heat-sensitive and heat-conducting material. The layer of polyester wrapped around the stainless steel yarn improves the wearing comfort and serves as substrate material for the thermochromic coating. The resulting hybrid yarn has a reproducible sensory function and changes its resistance by 0.15 Ω between 20 and 60 °C for a length of 30 cm. In addition, the yarn has a uniform and reproducible heating power, so that temperature steps can be achieved at a defined length by selecting certain voltages. The thermochromic color change is clearly visible between 28 and 29 °C. Due to its textile structure, the hybrid sensory and actuating yarn can easily be incorporated into a woven fabric or into a textile by means of joining technology sewing.
Collapse
Affiliation(s)
- Theresa Junge
- Research Institute for Textile and Clothing (FTB), Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Mönchengladbach, Germany; (R.B.); (T.W.)
| | - Rike Brendgen
- Research Institute for Textile and Clothing (FTB), Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Mönchengladbach, Germany; (R.B.); (T.W.)
| | - Carsten Grassmann
- Research Institute for Textile and Clothing (FTB), Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Mönchengladbach, Germany; (R.B.); (T.W.)
| | - Thomas Weide
- Research Institute for Textile and Clothing (FTB), Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Mönchengladbach, Germany; (R.B.); (T.W.)
- Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Mönchengladbach, Germany
| | - Anne Schwarz-Pfeiffer
- Research Institute for Textile and Clothing (FTB), Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Mönchengladbach, Germany; (R.B.); (T.W.)
- Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Mönchengladbach, Germany
| |
Collapse
|
6
|
Liu Y, Zhu H, Xing L, Bu Q, Ren D, Sun B. Recent advances in inkjet-printing technologies for flexible/wearable electronics. NANOSCALE 2023; 15:6025-6051. [PMID: 36892458 DOI: 10.1039/d2nr05649f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rapid development of flexible/wearable electronics requires novel fabricating strategies. Among the state-of-the-art techniques, inkjet printing has aroused considerable interest due to the possibility of large-scale fabricating flexible electronic devices with good reliability, high time efficiency, a low manufacturing cost, and so on. In this review, based on the working principle, recent advances in the inkjet printing technology in the field of flexible/wearable electronics are summarized, including flexible supercapacitors, transistors, sensors, thermoelectric generators, wearable fabric, and for radio frequency identification. In addition, some current challenges and future opportunities in this area are also addressed. We hope this review article can give positive suggestions to the researchers in the area of flexible electronics.
Collapse
Affiliation(s)
- Yu Liu
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
| | - Hongze Zhu
- College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Lei Xing
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
| | - Qingkai Bu
- College of Computer Science and Technology, Qingdao University, Qingdao 266071, PR. China
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR. China
| | - Dayong Ren
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR. China.
| | - Bin Sun
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR. China
| |
Collapse
|
7
|
Simić M, Stavrakis AK, Stojanović GM. Portable Heating and Temperature-Monitoring System with a Textile Heater Embroidered on the Facemask. ACS OMEGA 2022; 7:47214-47224. [PMID: 36570303 PMCID: PMC9773964 DOI: 10.1021/acsomega.2c06431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Personal heating systems are getting increasing interest because of the need to reduce the negative impact of cold weather on the health of people and animals. Heating the air before inhalation is of great importance as it can reduce the probability of various diseases. In this paper, we present a textile-based heater composed of commercial conductive threads, embroidered on an ordinary protective facemask. We also present the design and implementation details of the temperature monitoring and controlling circuit. Air temperature inside the facemask was monitored by a thermocouple placed in close proximity to the nose (nostrils). Preliminary testing revealed that the difference among temperatures in repeated heating cycles is in the range of ±1.5 °C. The response time for temperature increase from 29.9 to 40.5 °C was about 4 min, while the recovery time from 40.5 to 31.3 °C was about 4.3 min. Safety for human use and wireless data transmission to an application installed on a mobile phone are also demonstrated.
Collapse
|
8
|
Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic Fibers/Fabrics for Wearables and Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203808. [PMID: 36253094 PMCID: PMC9762321 DOI: 10.1002/advs.202203808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Wearables and bioelectronics rely on breathable interface devices with bioaffinity, biocompatibility, and smart functionality for interactions between beings and things and the surrounding environment. Elastic fibers/fabrics with mechanical adaptivity to various deformations and complex substrates, are promising to act as fillers, carriers, substrates, dressings, and scaffolds in the construction of biointerfaces for the human body, skins, organs, and plants, realizing functions such as energy exchange, sensing, perception, augmented virtuality, health monitoring, disease diagnosis, and intervention therapy. This review summarizes and highlights the latest breakthroughs of elastic fibers/fabrics for wearables and bioelectronics, aiming to offer insights into elasticity mechanisms, production methods, and electrical components integration strategies with fibers/fabrics, presenting a profile of elastic fibers/fabrics for energy management, sensors, e-skins, thermal management, personal protection, wound healing, biosensing, and drug delivery. The trans-disciplinary application of elastic fibers/fabrics from wearables to biomedicine provides important inspiration for technology transplantation and function integration to adapt different application systems. As a discussion platform, here the main challenges and possible solutions in the field are proposed, hopefully can provide guidance for promoting the development of elastic e-textiles in consideration of the trade-off between mechanical/electrical performance, industrial-scale production, diverse environmental adaptivity, and multiscenario on-spot applications.
Collapse
Affiliation(s)
- Yufan Zhang
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Jiahui Zhou
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Yue Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Desuo Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ken Tye Yong
- School of Biomedical EngineeringThe University of SydneySydneyNew South Wales2006Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| |
Collapse
|
9
|
Oh JH, Martinez AD, Cao H, George GW, Cobb JS, Sharma P, Fassero LA, Arole K, Carr MA, Lovell KM, Shukla J, Saed MA, Tandon R, Marquart ME, Moores LC, Green MJ. Radio Frequency Heating of Washable Conductive Textiles for Bacteria and Virus Inactivation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43732-43740. [PMID: 36121103 DOI: 10.1021/acsami.2c11493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ongoing COVID-19 pandemic has increased the use of single-use medical fabrics such as surgical masks, respirators, and other personal protective equipment (PPE), which have faced worldwide supply chain shortages. Reusable PPE is desirable in light of such shortages; however, the use of reusable PPE is largely restricted by the difficulty of rapid sterilization. In this work, we demonstrate successful bacterial and viral inactivation through remote and rapid radio frequency (RF) heating of conductive textiles. The RF heating behavior of conductive polymer-coated fabrics was measured for several different fabrics and coating compositions. Next, to determine the robustness and repeatability of this heating response, we investigated the textile's RF heating response after multiple detergent washes. Finally, we show a rapid reduction of bacteria and virus by RF heating our conductive fabric. 99.9% of methicillin-resistant Staphylococcus aureus (MRSA) was removed from our conductive fabrics after only 10 min of RF heating; human cytomegalovirus (HCMV) was completely sterilized after 5 min of RF heating. These results demonstrate that RF heating conductive polymer-coated fabrics offer new opportunities for applications of conductive textiles in the medical and/or electronic fields.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Aimee D Martinez
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Huaixuan Cao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Garrett W George
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi39180, United States
| | - Jared S Cobb
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi39180, United States
| | - Poonam Sharma
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Lauren A Fassero
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Kailash Arole
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Mary A Carr
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - K Michael Lovell
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Jayanti Shukla
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Mohammad A Saed
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas79409, United States
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi38655, United States
| | - Mary E Marquart
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi39216, United States
| | - Lee C Moores
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi39180, United States
| | - Micah J Green
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
| |
Collapse
|