1
|
Wang R, Jiao J, Liu D, He Y, Yang Y, Sun D, Pan H, Fang F, Wu R. High-Entropy Metal Nitride Embedded in Concave Porous Carbon Enabling Polysulfide Conversion in Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405148. [PMID: 38978436 DOI: 10.1002/smll.202405148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 07/10/2024]
Abstract
The practical implementation of lithium-sulfur batteries is severely hindered by the rapid capacity fading due to the solubility of the intermediate lithium polysulfides (LiPSs) and the sluggish redox kinetics. Herein, high-entropy metal nitride nanocrystals (HEMN) embedded within nitrogen-doped concave porous carbon (N-CPC) polyhedra are rationally designed as a sulfur host via a facile zeolitic imidazolate framework (ZIF)-driven adsorption-nitridation process toward this challenge. The configuration of high-entropy with incorporated metal manganese (Mn) and chromium (Cr) will optimize the d-band center of active sites with more electrons occupied in antibonding orbitals, thus promoting the adsorption and catalytic conversion of LiPSs. While the concave porous carbon not only accommodates the volume change upon the cycling processes but also physically confines and exposes active sites for accelerated sulfur redox reactions. As a result, the resultant HEMN/N-CPC composites-based sulfur cathode can deliver a high specific capacity of 1274 mAh g-1 at 0.2 C and a low capacity decay rate of 0.044% after 1000 cycles at 1 C. Moreover, upon sulfur loading of 5.0 mg cm-2, the areal capacity of 5.0 mAh cm-2 can still be achieved. The present work may provide a new avenue for the design of high-performance cathodes in Li-S batteries.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jihuang Jiao
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Da Liu
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yufei He
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Dalin Sun
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Honge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Fang Fang
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Renbing Wu
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
2
|
Zou R, Zhang J, Zheng Y, Li J, Liu W, Ran F. Tailoring Interfacial Electric Field by Gold Nanoparticles Enable Electrocatalytic Lithium Polysulfides Conversion for Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312102. [PMID: 38415950 DOI: 10.1002/smll.202312102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/04/2024] [Indexed: 02/29/2024]
Abstract
Although lithium-sulfur batteries (LSBs) are considered as the promising next rechargeable storage system ascribing to their decent specific capacity of inorganic sulfur, the development is partially impeded by inferior electronic conductivity, severe shuttle effect, and large volume variation. To tackle the issues above, a great deal of effort is made on sulfur-containing polymer (SCP) that shows better electrochemical performance. Nevertheless, sluggish conversion of lithium polysulfides (LiPSs) obstructs battery performance yet. Herein, electrocatalytic LiPSs with full conversion by tailoring the interfacial electric field are discovered based on gold nanoparticles (AuNPs) anchored on sulfurized polyaniline (SPANI). A downhill path of Gibbs free energy from organosulfur polymer to intermediate product means more spontaneously and favorable for full conversion, as the significant enhancement of electron density of state in the vicinity of the HOMO level for the AuNPs increase the electron transition probability rate. This composite delivers satisfactory electrochemical performance, especially increased rate capacity of >300 mAh g-1. Furthermore, catalyst mechanism on molecule level is proposed that AuNPsdominate chemical enhancement and higher electron delocalizablility betweenAuNPs and LiPSs molecules. These results can erect a promising strategy for enhancing lithium polysulfides full conversion.
Collapse
Affiliation(s)
- Rong Zou
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Jie Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Yawen Zheng
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Jinling Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Wenwu Liu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| |
Collapse
|
3
|
Wang H, Guo H, Huang Z, Liu W, Li M, Yao J, Cui J, Wang Y, Ren M. Bidirectional enhancement of Li 2S redox reaction by NiSe 2/CoSe 2-rGO heterostructured bi-functional catalysts. J Colloid Interface Sci 2024; 660:458-468. [PMID: 38246049 DOI: 10.1016/j.jcis.2024.01.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
The high activity barriers of Li2S nucleation and deposition limit the redox reaction kinetics of lithium polysulfides (LiPSs), meanwhile, the significant shuttle effect of LiPSs hampers the advancement of Li-S batteries (LSBs). In this work, a NiSe2/CoSe2-rGO (NiSe2/CoSe2-G) sulfur host with bifunctional catalytic activity was prepared through a hard template method. Electrochemical experiment results confirm that the combination of NiSe2 and CoSe2 not only facilitates the bidirectional catalytic function during charge and discharge processes, but also increases the active sites toward LiPSs adsorption. Simultaneously, the highly conductive rGO network enhances the electronic conductivity of NiSe2/CoSe2-G/S and provides convenience for loading NiSe2/CoSe2 catalysts. Benefitting from the exceptional catalytic-adsorption capability of NiSe2/CoSe2 and the presence of rGO, the NiSe2/CoSe2-G/S electrode exhibits excellent electrochemical properties. At 1C, it demonstrates a low capacity attenuation of 0.087 % per cycle during 500 cycles. The electrode can maintain a discharge capacity of 927 mAh/g at a sulfur loading of 3.3 mg cm-2. The bidirectional catalytic activity of NiSe2/CoSe2-G offers a prospective approach to expedite the redox reactions of active S, meanwhile, this work also offers an ideal approach for designing efficient S hosts for LSBs.
Collapse
Affiliation(s)
- He Wang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongling Guo
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zihao Huang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Weiliang Liu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mei Li
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jinshui Yao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuanhao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China.
| | - Manman Ren
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
4
|
Wu M, Xing Z, Zhu R, Liu X, Feng Y, Shao W, Yan R, Yin B, Li S. 2D Nano-Channeled Molybdenum Compounds for Accelerating Interfacial Polysulfides Catalysis in Li-S Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306991. [PMID: 37939298 DOI: 10.1002/smll.202306991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Indexed: 11/10/2023]
Abstract
The shuttle effect, which causes the loss of active sulfur, passivation of lithium anode, and leads to severe capacity attenuation, is currently the main bottleneck for lithium-sulfur batteries. Recent studies have disclosed that molybdenum compounds possess exceptional advantages as a polar substrate to immobilize and catalyze lithium polysulfide such as high conductivity and strong sulfiphilicity. However, these materials show incomplete contact with sulfur/polysulfides, which causes uneven redox conversion of sulfur and results in poor rate performance. Herein, a new type of 2D nano-channeled molybdenum compounds (2D-MoNx) via the 2D organic-polyoxometalate superstructure for accelerating interfacial polysulfide catalysis toward high-performance lithium-sulfur batteries is reported. The 2D-MoNx shows well-interlinked nano-channels, which increase the reactive interface and contact surface with polysulfides. Therefore, the battery equipped with 2D-MoNx displays a high discharge capacity of 912.7 mAh g-1 at 1 C and the highest capacity retention of 523.7 mAh g-1 after 300 cycles. Even at the rate of 2 C, the capacity retention can be maintained at 526.6 mAh g-1 after 300 cycles. This innovative nano-channel and interfacial design of 2D-MoNx provides new nanostructures to optimize the sulfur redox chemistry and eliminate the shuttle effect of polysulfides.
Collapse
Affiliation(s)
- Min Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ran Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenjie Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
5
|
Zhang J, Yan X, Cheng Z, Han Y, Zhang Y, Dong Y. Applications, prospects and challenges of metal borides in lithium sulfur batteries. J Colloid Interface Sci 2024; 657:511-528. [PMID: 38070337 DOI: 10.1016/j.jcis.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
Although the lithium-sulfur (Li-S) battery has a theoretical capacity of up to 1675 mA h g-1, its practical application is limited owing to some problems, such as the shuttle effect of soluble lithium polysulfides (LiPSs) and the growth of Li dendrites. It has been verified that some transition metal compounds exhibit strong polarity, good chemical adsorption and high electrocatalytic activities, which are beneficial for the rapid conversion of intermediate product in order to effectively inhibit the "shuttle effect". Remarkably, being different from other metal compounds, it is a significant characteristic that both metal and boron atoms of transition metal borides (TMBs) can bind to LiPSs, which have shown great potential in recent years. Here, for the first time, almost all existing studies on TMBs employed in Li-S cells are comprehensively summarized. We firstly clarify special structures and electronic features of metal borides to show their great potential, and then existing strategies to improve the electrochemical properties of TMBs are summarized and discussed in the focus sections, such as carbon-matrix construction, morphology control, heteroatomic doping, heterostructure formation, phase engineering, preparation techniques. Finally, the remaining challenges and perspectives are proposed to point out a direction for realizing high-energy and long-life Li-S batteries.
Collapse
Affiliation(s)
- Jianmin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xueli Yan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zihao Cheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yumiao Han
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yutao Dong
- College of Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
6
|
Wang F, Han Y, Feng X, Xu R, Li A, Wang T, Deng M, Tong C, Li J, Wei Z. Mesoporous Carbon-Based Materials for Enhancing the Performance of Lithium-Sulfur Batteries. Int J Mol Sci 2023; 24:ijms24087291. [PMID: 37108464 PMCID: PMC10138428 DOI: 10.3390/ijms24087291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
The most promising energy storage devices are lithium-sulfur batteries (LSBs), which offer a high theoretical energy density that is five times greater than that of lithium-ion batteries. However, there are still significant barriers to the commercialization of LSBs, and mesoporous carbon-based materials (MCBMs) have attracted much attention in solving LSBs' problems, due to their large specific surface area (SSA), high electrical conductivity, and other unique advantages. The synthesis of MCBMs and their applications in the anodes, cathodes, separators, and "two-in-one" hosts of LSBs are reviewed in this study. Most interestingly, we establish a systematic correlation between the structural characteristics of MCBMs and their electrochemical properties, offering recommendations for improving performance by altering the characteristics. Finally, the challenges and opportunities of LSBs under current policies are also clarified. This review provides ideas for the design of cathodes, anodes, and separators for LSBs, which could have a positive impact on the performance enhancement and commercialization of LSBs. The commercialization of high energy density secondary batteries is of great importance for the achievement of carbon neutrality and to meet the world's expanding energy demand.
Collapse
Affiliation(s)
- Fangzheng Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Yuying Han
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Xin Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Rui Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Ang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Mingming Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Cheng Tong
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| |
Collapse
|
7
|
Jia D, Shen Q. Multifunctional Mesoporous Carbonaceous Materials Enable the High Performance of Lithium-Sulfur Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3173-3178. [PMID: 36802662 DOI: 10.1021/acs.langmuir.2c03446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Focusing on multifunctional mesoporous carbonaceous materials (MCMs) is one of the hot research topics due to increasing demand in the high-energy-density devices of lithium-sulfur (Li-S) batteries (2600 Wh kg-1). On the premise of applying MCMs as a porous framework to load elemental sulfur, to improve the electronic conductivity of the cathode, and to trap the in situ-formed electrolyte-soluble intermediates of lithium polysulfides (LiPSs), the commercialization of MCMs-based energy storage devices still needs to solve solid/solid and solid/liquid interfacial issues such as the chemical anchoring of the electrically insulating active substances, the sluggish redox kinetics of intermediate LiPSs, and so on. Through the permutation of multifunctional MCMs serving as the primary sulfur-loading carrier of the cathode, as the secondary surface-coating layers of the separator, the cathode, and the anode separately, this Perspective highlights research challenges to clarify a comprehensive high-performance mechanism of MCM-based Li-S batteries and provides new chemical insight for potential application purposes.
Collapse
Affiliation(s)
- Dandan Jia
- Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao 266237, P. R. China
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Qiang Shen
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
8
|
Yang X, Jia J, Sun L, Huang G, Zhou J, Liao R, Wu Z, Yu L, Wang Z. Regeneration of Activated Sludge into SiO 2-Decorated Heteroatom-Doped Porous Carbon as Advanced Electrodes for Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10660-10669. [PMID: 36799939 DOI: 10.1021/acsami.2c20895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The regeneration of harmful activated sludge into an energy source is an important strategy for municipal sludge treatment and recycling. Herein, SiO2-modified N,S auto-doped porous carbon (NSC@SiO2) with high conductivity (70 S m-1) is successfully obtained through a simple calcination method of the activated sludge from wastewater treatment. Further, P-doped NSC@SiO2 (NSPC@SiO2) is designed to achieve a higher surface area (891 m2 g-1 vs 624 m2 g-1), a larger pore volume (0.87 cm3 g-1 vs 0.08 cm3 g-1), and more carbon defects. Due to its special structure, NSPC@SiO2 is used as a sulfur host of lithium-sulfur batteries. The results of polysulfide adsorption experiments, S 2p X-ray photoelectron spectra (XPS), Li2S nucleation experiments, polysulfide symmetric cells, measurement of the galvanostatic intermittent titration (GITT), polarization voltage difference, lithium-ion diffusion rate, and Tafel slope verified that NSPC@SiO2 greatly improved the adsorption capacity of polysulfides, lowered the barrier to Li2S formation and the internal resistances of cells, and accelerated Li+ ion diffusion and the reaction kinetics of polysulfide conversion, resulting in the excellent performance of polysulfide capture and superior rate performance and cyclic stability. By comparing NSPC@SiO2 with NSC@SiO2, a higher initial capacity (1377 mAh g-1 vs 1150 mAh g-1 at 0.1C), better rate capacity (912 mAh g-1 vs 719 mAh g-1 at 2C), and low capacity decay (0.094% per cycle within 200 cycles) are obtained. Our work provides direction for the treatment, disposal, and resource utilization of activated sludge.
Collapse
Affiliation(s)
- Xiongzhi Yang
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institution, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jinzhu Jia
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institution, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Linghao Sun
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institution, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Guangsheng Huang
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institution, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Junli Zhou
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institution, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| | - Ruanming Liao
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institution, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhonghui Wu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institution, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Lin Yu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institution, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhenbo Wang
- Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
9
|
Yan R, Zhao Z, Cheng M, Yang Z, Cheng C, Liu X, Yin B, Li S. Origin and Acceleration of Insoluble Li 2 S 2 -Li 2 S Reduction Catalysis in Ferromagnetic Atoms-based Lithium-Sulfur Battery Cathodes. Angew Chem Int Ed Engl 2023; 62:e202215414. [PMID: 36321878 PMCID: PMC10107143 DOI: 10.1002/anie.202215414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Accelerating insoluble Li2 S2 -Li2 S reduction catalysis to mitigate the shuttle effect has emerged as an innovative paradigm for high-efficient lithium-sulfur battery cathodes, such as single-atom catalysts by offering high-density active sites to realize in situ reaction with solid Li2 S2 . However, the profound origin of diverse single-atom species on solid-solid sulfur reduction catalysis and modulation principles remains ambiguous. Here we disclose the fundamental origin of Li2 S2 -Li2 S reduction catalysis in ferromagnetic elements-based single-atom materials to be from their spin density and magnetic moments. The experimental and theoretical studies disclose that the Fe-N4 -based cathodes exhibit the fastest deposition kinetics of Li2 S (226 mAh g-1 ) and the lowest thermodynamic energy barriers (0.56 eV). We believe that the accelerated Li2 S2 -Li2 S reduction catalysis enabled via spin polarization of ferromagnetic atoms provides practical opportunities towards long-life batteries.
Collapse
Affiliation(s)
- Rui Yan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhenyang Zhao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Menghao Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhao Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xikui Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Bo Yin
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Shuang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of ChemistryTechnische Universität BerlinBerlin10623Germany
| |
Collapse
|
10
|
Yan R, Zhao Z, Cheng M, Yang Z, Cheng C, Liu X, Yin B, Li S. Origin and Acceleration of Insoluble Li
2
S
2
−Li
2
S Reduction Catalysis in Ferromagnetic Atoms‐based Lithium‐Sulfur Battery Cathodes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202215414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Rui Yan
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Menghao Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zhao Yang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Xikui Liu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Bo Yin
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Shuang Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
- Department of Chemistry Technische Universität Berlin Berlin 10623 Germany
| |
Collapse
|
11
|
Zhao L, Zhao L, Zhao Y, Liu G. Nitrogen/sulfur dual-doped micro-mesoporous hierarchical porous carbon as host for Li-S batteries. Front Bioeng Biotechnol 2022; 10:997622. [PMID: 36225606 PMCID: PMC9548537 DOI: 10.3389/fbioe.2022.997622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
A simple hydrothermal process employing sucrose and glutathione as the source of carbon and nitrogen-sulfur, respectively, a porous carbon/sulfur composite material doped with nitrogen and sulfur (NSPCS) was synthesized. The detailed structure information of the material was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The morphology information was investigated through Scanning Electron Microscope (SEM) methods. Structure of the pores and pore size distribution were investigated employing N2 adsorption-desorption isotherm. The material was treated Thermogravimetric analysis (TGA) in order to know the weight ratio of sulfur. The synthesized NSPCS composite produced high specific capacity, excellent rate performance and exceptionally good cycle stability when used as the positive electrode in Li-S batteries.
Collapse
Affiliation(s)
- Liping Zhao
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, China
- *Correspondence: Liping Zhao, ; Ye Zhao,
| | - Lihe Zhao
- Daqing Oilfield Design Institute Co, Ltd, Daqing, China
| | - Ye Zhao
- FAW Tooling Die Manufacturing Co, Ltd, Changchun, China
- *Correspondence: Liping Zhao, ; Ye Zhao,
| | - Gang Liu
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, China
| |
Collapse
|
12
|
The Fig-Like Hierarchical Double-Shelled Hollow TiN Particles as Sulfur Host for Lithium-Sulfur Batteries. J Colloid Interface Sci 2022; 628:562-573. [DOI: 10.1016/j.jcis.2022.07.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
|
13
|
Xie S, Chen X, Wang C, Lu YR, Chan TS, Chuang CH, Zhang J, Yan W, Jin S, Jin H, Wu X, Ji H. Role of the Metal Atom in a Carbon-Based Single-Atom Electrocatalyst for LiS Redox Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200395. [PMID: 35384295 DOI: 10.1002/smll.202200395] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Carbon-based single metal atom catalysts (SACs) are being extensively investigated to improve the kinetics of the Li-S redox reaction, which is greatly important for batteries with cell-level energy densities >500 W h kg-1 . However, there are contradictory reports regarding the electrocatalytic activities of the different metal atoms and the role of the metal atom in LiS chemistry still remains unclear. This is due to the complex relationship between the catalytic behavior and the structure of carbon-based SACs. Here, the catalytic behavior and active-site geometry, oxidation state, and the electronic structure of different metal centers (Fe/Co/Ni) embedded in nitrogen-doped graphene, and having similar physicochemical characteristics, are studied. Combining X-ray absorption spectroscopy, density functional theory calculations, and electrochemical analysis, it is revealed that the coordination-geometry and oxidation state of the metal atoms are modified when interacting with sulfur species. This interaction is strongly dependent on the hybridization of metal 3d and S p-orbitals. A moderate hybridization with the Fermi level crossing the metal 3d band is more favorable for LiS redox reactions. This study thus provides a fundamental understanding of how metal atoms in SACs impact LiS redox behavior and offers new guidelines to develop highly active catalytic materials for high-performance LiS batteries.
Collapse
Affiliation(s)
- Shuai Xie
- School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Xingjia Chen
- School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information and Quantum Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Yin-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Cheng-Hao Chuang
- Department of Physics, Tamkang University, Tamsui 251, New Taipei City, 251301, Taiwan
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing, 100049, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Song Jin
- School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Hongchang Jin
- School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaojun Wu
- School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information and Quantum Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Hengxing Ji
- School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
14
|
Quay YJ, Chung SH. Structural and Surfacial Modification of Carbon Nanofoam as an Interlayer for Electrochemically Stable Lithium-Sulfur Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3342. [PMID: 34947691 PMCID: PMC8704985 DOI: 10.3390/nano11123342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
Electrochemical lithium-sulfur batteries engage the attention of researchers due to their high-capacity sulfur cathodes, which meet the increasing energy-density needs of next-generation energy-storage systems. We present here the design, modification, and investigation of a carbon nanofoam as the interlayer in a lithium-sulfur cell to enable its high-loading sulfur cathode to attain high electrochemical utilization, efficiency, and stability. The carbon-nanofoam interlayer features a porous and tortuous carbon network that accelerates the charge transfer while decelerating the polysulfide diffusion. The improved cell demonstrates a high electrochemical utilization of over 80% and an enhanced stability of 200 cycles. With such a high-performance cell configuration, we investigate how the battery chemistry is affected by an additional polysulfide-trapping MoS2 layer and an additional electron-transferring graphene layer on the interlayer. Our results confirm that the cell-configuration modification brings major benefits to the development of a high-loading sulfur cathode for excellent electrochemical performances. We further demonstrate a high-loading cathode with the carbon-nanofoam interlayer, which attains a high sulfur loading of 8 mg cm-2, an excellent areal capacity of 8.7 mAh cm-2, and a superior energy density of 18.7 mWh cm-2 at a low electrolyte-to-sulfur ratio of 10 µL mg-1.
Collapse
Affiliation(s)
- Yee-Jun Quay
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 701, Taiwan;
| | - Sheng-Heng Chung
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 701, Taiwan;
- Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, Tainan City 701, Taiwan
| |
Collapse
|