1
|
Gigi S, Cohen T, Florio D, Levi A, Stone D, Katoa O, Li J, Liu J, Remennik S, Camargo FVA, Cerullo G, Frenkel AI, Banin U. Photocatalytic Semiconductor-Metal Hybrid Nanoparticles: Single-Atom Catalyst Regime Surpasses Metal Tips. ACS NANO 2025; 19:2507-2517. [PMID: 39760373 PMCID: PMC11760151 DOI: 10.1021/acsnano.4c13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Semiconductor-metal hybrid nanoparticles (HNPs) are promising materials for photocatalytic applications, such as water splitting for green hydrogen generation. While most studies have focused on Cd containing HNPs, the realization of actual applications will require environmentally compatible systems. Using heavy-metal free ZnSe-Au HNPs as a model, we investigate the dependence of their functionality and efficiency on the cocatalyst metal domain characteristics ranging from the single-atom catalyst (SAC) regime to metal-tipped systems. The SAC regime was achieved via the deposition of individual atomic cocatalysts on the semiconductor nanocrystals in solution. Utilizing a combination of electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy, we established the presence of single Au atoms on the ZnSe nanorod surface. Upon increased Au concentration, this transitions to metal tip growth. Photocatalytic hydrogen generation measurements reveal a strong dependence on the cocatalyst loading with a sharp response maximum in the SAC regime. Ultrafast dynamics studies show similar electron decay kinetics for the pristine ZnSe nanorods and the ZnSe-Au HNPs in either SAC or tipped systems. This indicates that electron transfer is not the rate-limiting step for the photocatalytic process. Combined with the structural-chemical characterization, we conclude that the enhanced photocatalytic activity is due to the higher reactivity of the single-atom sites. This holistic view establishes the significance of SAC-HNPs, setting the stage for designing efficient and sustainable heavy-metal-free photocatalyst nanoparticles for numerous applications.
Collapse
Affiliation(s)
- Shira Gigi
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tal Cohen
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diego Florio
- Dipartimento
di Fisica, Politecnico di Milano, Milano 20133, Italy
- Istituto
di Fotonica e Nanotecnologie, Consiglio
Nazionale delle Ricerche, Milano 20133, Italy
| | - Adar Levi
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - David Stone
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ofer Katoa
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Junying Li
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Jing Liu
- Department
of Mathematics and Physics, Manhattan University, Riverdale, New York 10471, United States
| | - Sergei Remennik
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Franco V. A. Camargo
- Istituto
di Fotonica e Nanotecnologie, Consiglio
Nazionale delle Ricerche, Milano 20133, Italy
| | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, Milano 20133, Italy
- Istituto
di Fotonica e Nanotecnologie, Consiglio
Nazionale delle Ricerche, Milano 20133, Italy
| | - Anatoly I. Frenkel
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Uri Banin
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
2
|
Wang H, Choi H, Shimogawa R, Li Y, Zhang L, Kim HY, Frenkel AI. Unravelling the origin of reaction-driven aggregation and fragmentation of atomically dispersed Pt catalyst on ceria support. NANOSCALE 2024; 16:14716-14721. [PMID: 38829119 DOI: 10.1039/d4nr01396d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Metal-support interaction plays a crucial role in governing the stability and activity of atomically dispersed platinum catalysts on ceria support. The migration and aggregation of platinum atoms during the catalytic reaction leads to the redistribution of active sites. In this study, by utilizing a multimodal characterization scheme, we observed the aggregation of platinum atoms at high temperatures under reverse water gas shift reaction conditions and the subsequent fragmentation of platinum clusters, forming "single atoms" upon cooling. Theoretical simulations of both effects uncovered the roles of carbon monoxide binding on perimeter Pt sites in the clusters and hydrogen coverage in the aggregation and fragmentation mechanisms. This study highlights the complex effects of adsorbate and supports interactions with metal sites in Pt/ceria catalysts that govern their structural transformations under in situ conditions.
Collapse
Affiliation(s)
- Haodong Wang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ryuichi Shimogawa
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
- Mitsubishi Chemical Corporation, Science and Innovation Center, Yokohama 227-8502, Japan
| | - Yuanyuan Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
- Division of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
3
|
Yoko A, Wang H, Furuya K, Takahashi D, Seong G, Tomai T, Frenkel AI, Saito M, Inoue K, Ikuhara Y, Adschiri T. Reduction of (100)-Faceted CeO 2 for Effective Pt Loading. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:5611-5620. [PMID: 38883434 PMCID: PMC11171262 DOI: 10.1021/acs.chemmater.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Abstract
Although the function and stability of catalysts are known to significantly depend on their dispersion state and support interactions, the mechanism of catalyst loading has not yet been elucidated. To address this gap in knowledge, this study elucidates the mechanism of Pt loading based on a detailed investigation of the interaction between Pt species and localized polarons (Ce3+) associated with oxygen vacancies on CeO2(100) facets. Furthermore, an effective Pt loading method was proposed for achieving high catalytic activity while maintaining the stability. Enhanced dispersibility and stability of Pt were achieved by controlling the ionic interactions between dissolved Pt species and CeO2 surface charges via pH adjustment and reduction pretreatment of the CeO2 support surface. This process resulted in strong interactions between Pt and the CeO2 support. Consequently, the oxygen-carrier performance was improved for CH4 chemical looping reforming reactions. This simple interaction-based loading process enhanced the catalytic performance, allowing the efficient use of noble metals with high performance and small loading amounts.
Collapse
Affiliation(s)
- Akira Yoko
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-8572, Japan
| | - Haodong Wang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ko Furuya
- Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Daiki Takahashi
- Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Gimyeong Seong
- Department of Environmental & Energy Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea
| | - Takaaki Tomai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mitsuhiro Saito
- Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kazutoshi Inoue
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yuichi Ikuhara
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan
| | - Tadafumi Adschiri
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
4
|
Das D, Prakash J, Bandyopadhyay A, Balhara A, Goutam UK, Acharya R, Gupta SK, Sudarshan K. Modulating the effective ionic radii of trivalent dopants in ceria using a combination of dopants to improve catalytic efficiency for the oxygen evolution reaction. RSC Adv 2024; 14:17801-17813. [PMID: 38832250 PMCID: PMC11145625 DOI: 10.1039/d4ra03360d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Aliovalent doping in ceria and defect engineering are important aspects in tuning the properties of ceria for advanced technological applications, especially in the emerging field of electrocatalytic water-splitting for harvesting renewable energy. However, the ambiguity regarding the choice of dopants/co-dopants and ways to deal with the size difference between dopants and lattice hosts remains a long-standing problem. In this study, ceria was aliovalently codoped with Sc3+ and La3+ while keeping the total concentration of dopants constant; the ionic radius of the former is smaller and that of the latter is larger than Ce4+. Variations in the relative amounts of these dopants helped to modulate the effective ionic radii and match that of the host. A systematic study on the role of these aliovalent dopants in defect evolution in ceria and in modulating the Ce3+ fraction using powder XRD, Rietveld refinement, positron annihilation lifetime spectroscopy, X-ray photoelectron spectroscopy, Eu3+ photoluminescence, and Raman spectroscopy is presented here. The evolved defects and their dependence on subtle factors other than charge compensation are further correlated with their electrocatalytic activity towards oxygen evolution reaction (OER) in alkaline medium. The catalyst with an optimum defect density, maximum Ce3+ fraction at the surface and the least effective ionic radius difference between the dopants and the host demonstrated the best performance towards the OER. This study demonstrates how effective ionic radius modulation in defect-engineered ceria through a judicious choice of codopants can enhance the catalytic property of ceria and provides immensely helpful information for designing ceria-based heterogeneous catalysts with desired functionalities.
Collapse
Affiliation(s)
- Debarati Das
- Radiochemistry Division, Bhabha Atomic Research Centre Mumbai-400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400094 India
| | - Jyoti Prakash
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400094 India
- Materials Group, Bhabha Atomic Research Centre Mumbai-400085 India
| | - Anisha Bandyopadhyay
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400094 India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai-400085 India
| | - Annu Balhara
- Radiochemistry Division, Bhabha Atomic Research Centre Mumbai-400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400094 India
| | - U K Goutam
- Technical Physics Division, Bhabha Atomic Research Centre Mumbai-400085 India
| | - Raghunath Acharya
- Radiochemistry Division, Bhabha Atomic Research Centre Mumbai-400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400094 India
| | - Santosh K Gupta
- Radiochemistry Division, Bhabha Atomic Research Centre Mumbai-400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400094 India
| | - Kathi Sudarshan
- Radiochemistry Division, Bhabha Atomic Research Centre Mumbai-400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400094 India
| |
Collapse
|
5
|
Li Y, Wang H, Song H, Rui N, Kottwitz M, Senanayake SD, Nuzzo RG, Wu Z, Jiang DE, Frenkel AI. Active sites of atomically dispersed Pt supported on Gd-doped ceria with improved low temperature performance for CO oxidation. Chem Sci 2023; 14:12582-12588. [PMID: 38020390 PMCID: PMC10646890 DOI: 10.1039/d3sc03988a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
"Single - atom" catalysts (SACs) have been the focus of intense research, due to debates about their reactivity and challenges toward determining and designing "single - atom" (SA) sites. To address the challenge, in this work, we designed Pt SACs supported on Gd-doped ceria (Pt/CGO), which showed improved activity for CO oxidation compared to its counterpart, Pt/ceria. The enhanced activity of Pt/CGO was associated with a new Pt SA site which appeared only in the Pt/CGO catalyst under CO pretreatment at elevated temperatures. Combined X-ray and optical spectroscopies revealed that, at this site, Pt was found to be d-electron rich and bridged with Gd-induced defects via an oxygen vacancy. As explained by density functional theory calculations, this site opened a new path via a dicarbonyl intermediate for CO oxidation with a greatly reduced energy barrier. These results provide guidance for rationally improving the catalytic properties of SA sites for oxidation reactions.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Materials Science and Chemical Engineering, Stony Brook University Stony Brook NY 11794 USA
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Haodong Wang
- Department of Materials Science and Chemical Engineering, Stony Brook University Stony Brook NY 11794 USA
| | - Haohong Song
- Interdisciplinary Materials Science, Vanderbilt University Nashville TN 37235 USA
| | - Ning Rui
- Chemistry Division, Brookhaven National Laboratory Upton NY 11973 USA
| | - Matthew Kottwitz
- Department of Chemistry, University of Illinois Urbana IL 61801 USA
| | | | - Ralph G Nuzzo
- Department of Chemistry, University of Illinois Urbana IL 61801 USA
- Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Drottning Kristinasväg 51 10044 Stockholm Sweden
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - De-En Jiang
- Interdisciplinary Materials Science, Vanderbilt University Nashville TN 37235 USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235 USA
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University Stony Brook NY 11794 USA
- Chemistry Division, Brookhaven National Laboratory Upton NY 11973 USA
| |
Collapse
|
6
|
Shi H, Yang P, Huang L, Wu Y, Yu D, Wu H, Zhang Y, Xiao P. Single-atom Pt-CeO2/Co3O4 catalyst with ultra-low Pt loading and high performance for toluene removal. J Colloid Interface Sci 2023; 641:972-980. [PMID: 36989823 DOI: 10.1016/j.jcis.2023.03.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/05/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
The design and manufacture of high activity and thermal stability catalysts with minimal precious metal loading is essential for deep degradation of volatile organic compounds (VOCs). In this paper, a novel single-atom Pt-CeO2/Co3O4 catalyst with ultra-low Pt loading capacity (0.06 wt%, denoted as 0.06Pt-SA) was fabricated via one-step co-precipitation method. The 0.06Pt-SA exhibited excellent toluene degradation activity of T90 = 169 °C, matched with the nanoparticle Pt-supported CeO2/Co3O4 catalyst with more than six times higher Pt loading (0.41 wt%, denoted as 0.41Pt-NP). Moreover, the ultra-long durability (toluene conversion remains 99% after 120 h stability test) and excellent toluene degradation ability in a wide space speed range of 0.06Pt-SA were superior to that of 0.41Pt-NP catalyst. The excellent performance was derived from the strong metal-support interaction (SMSI) between the single atomic Pt and the carrier, which induced more Pt0 and Ce3+ for oxygen activation and more Co3+ for toluene removal. The in situdiffuse reflectance infrared spectroscopy (DRIFTS) experiments confirmed that the conversion of intermediates was accelerated in the reaction process, thereby promoting the toluene degradation. Our results should inspire the exploitation of noble single-atomic modification strategy for developing the low cost and high performance VOCs catalyst.
Collapse
|
7
|
Li Q, Zhao H, Yang J, Zhao J, Yan L, Song H, Chou L. Catalytic behavior of Mo–Bi–Fe–Co–K–M–O (M=Ce, Gd, CeGd) catalysts for selective oxidation of isobutene. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Chen L, Kovarik L, Meira D, Szanyi J. Differentiating and Understanding the Effects of Bulk and Surface Mo Doping on CO 2 Hydrogenation over Pd/Anatase-TiO 2. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linxiao Chen
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Libor Kovarik
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Debora Meira
- CLS@APS Sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - János Szanyi
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
9
|
Giannakakis G, Mitchell S, Pérez-Ramírez J. Single-atom heterogeneous catalysts for sustainable organic synthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|