1
|
Wei H, Lin P, Shi B, Xu L, Yang X, Sun W. Study of Manipulative In Situ Pore-Formation upon Polymeric Coating on Cylindrical Substrate for Sustained Drug Delivery. Macromol Biosci 2024; 24:e2400273. [PMID: 39038119 DOI: 10.1002/mabi.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Herein, the micro-porous polylactic acid coating applied on the surface of the cylindrical substrate is fabricated by a novel in situ pore-formation strategy based on the combinational effect of breath figure (BF) and vapor-induced phase separation (VIPS) processes. Under the condition of high environmental humidity, solvent pair of chloroform and dimethylformamide is employed for post-treatment onto pre-formed PLA coating to induce the pore-formation following the mechanism of BF and VIPS, respectively. A composite porous structure with both cellular-like and bi-continuous network morphologies is obtained. By tunning the experimental factors including the ratio of the solvent pair, environmental humidity, and temperature, morphological manipulation upon the pore morphology can be facilely achieved based on the control of mechanism transition between BF and VIPS. Paclitaxel is used as a model drug and loaded into the porous coating by the wicking effect of post-immersion. Coatings with different morphological features show varying drug loading and release capacities. The 28-day release test reveals dynamic release profiles between different coating samples, with the total release rate ranging from 35.70% to 79.96%. Optimal loading capacity of 19.28 µg cm-2 and 28-day release rate of 35.70% are achieved for the coating with composite BF-VIPS structure. This research established a cost-efficient strategy with high flexibility in the structural manipulation concerning the construction of drug-eluting coating with the feature of manipulative drug delivery.
Collapse
Affiliation(s)
- Hao Wei
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Ping Lin
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Baozhang Shi
- Department of General Surgery, Ningbo Haishu People's Hospital, Ningbo, 315000, China
| | - Liping Xu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Xiaoping Yang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Wei Sun
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
2
|
Yu J, Bai L, Feng Z, Chen L, Xu S, Wang Y. Waste treats waste: Facile fabrication of porous adsorbents from recycled PET and sodium alginate for efficient dye removal. CHEMOSPHERE 2024; 355:141738. [PMID: 38513955 DOI: 10.1016/j.chemosphere.2024.141738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Dye-contaminated water and waste plastic both pose enormous threats to human health and the ecological environment, and simultaneously solving these two issues in a sustainable and resource-saving way is highly important. In this work, a sodium alginate-polyethylene terephthalate-sodium alginate (SA@PET) composite adsorbent for efficient dye removal is fabricated using wasted PET bottle and marine plant-based SA via simple and energy-efficient nonsolvent-induced phase separation (NIPS) method. Benefiting from its porous structure and the abundant binding sites, SA@PET shows an excellent methylene blue (MB) adsorption capacity of 1081 mg g-1. The Redlich-Peterson model more accurately describes the adsorption behavior, suggesting multiple adsorption mechanisms. In addition to the electrostatic attractions of SA to MB, polar interactions between the PET matrix and MB are also identified as adsorption mechanisms. It is worth mentioning that SA@PET could be recycled 7 times without a serious decrease in performance, and the trifluoroacetic acid-dichloromethane solvent involved in the NIPS process has the possibility of reuse and stepwise recovery. Finally, the discarded adsorbent could be completely degraded under mild conditions. This work provides not only a composite adsorbent with excellent cationic dye removal performance for wastewater treatment, but also an upcycling strategy for waste PET.
Collapse
Affiliation(s)
- Jing Yu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lan Bai
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zijun Feng
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lin Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shimei Xu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuzhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
3
|
Qian K, Zhou J, Miao M, Wu H, Thaiboonrod S, Fang J, Feng X. Highly Ordered Thermoplastic Polyurethane/Aramid Nanofiber Conductive Foams Modulated by Kevlar Polyanion for Piezoresistive Sensing and Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2023; 15:88. [PMID: 37029266 PMCID: PMC10082146 DOI: 10.1007/s40820-023-01062-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference (EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane (TPU) foams reinforced by aramid nanofibers (ANF) with adjustable pore-size distribution were successfully obtained via a non-solvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles (Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti3C2Tx MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti3C2Tx MXene (PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0-344.5 kPa (50% strain) with good sensitivity at 0.46 kPa-1. Meanwhile, the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human-machine interfaces.
Collapse
Affiliation(s)
- Kunpeng Qian
- School of Materials Sciences and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jianyu Zhou
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Miao Miao
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hongmin Wu
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Sineenat Thaiboonrod
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Jianhui Fang
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xin Feng
- School of Materials Sciences and Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
4
|
Qian HL, Chen SY, Jia F, Huang WP, Wang J, Ren KF, Fu GS, Ji J. "Spongy skin" as a robust strategy to deliver 4-octyl itaconate for conducting dual-regulation against in-stent restenosis. Biomaterials 2023; 296:122069. [PMID: 36893653 DOI: 10.1016/j.biomaterials.2023.122069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
The valid management of inflammation and precise inhibition of smooth muscle cells (SMCs) is regarded as a promising strategy for regulating vascular responses after stent implantation, yet posing huge challenges to current coating constructions. Herein, we proposed a spongy cardiovascular stent for the protective delivery of 4-octyl itaconate (OI) based on a "spongy skin" approach, and revealed the dual-regulation effects of OI for improving vascular remolding. We first constructed a "spongy skin" onto poly-l-lactic acid (PLLA) substrates, and realized the protective loading of OI with the highest dosage of 47.9 μg/cm2. Then, we verified the remarkable inflammation mediation of OI, and surprisingly revealed that the OI incorporation specifically inhibited SMC proliferation and phenotype switching, which contributed to the competitive growth of endothelial cells (EC/SMC ratio ∼ 5.1). We further demonstrated that OI at a concentration of 25 μg/mL showed significant suppression of the TGF-β/Smad pathway of SMCs, leading to the promotion of contractile phenotype and reduction of extracellular matrix. In vivo evaluation indicated that the successful delivery of OI fulfilled the inflammation regulation and SMCs inhibition, therefore suppressing the in-stent restenosis. This "spongy skin" based OI eluting system may serve as a new strategy for improving vascular remolding, and provides a potential concept for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Hong-Lin Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Haining, 314400, China
| | - Sheng-Yu Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Fan Jia
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Haining, 314400, China
| | - Wei-Pin Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Haining, 314400, China
| | - Jing Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Haining, 314400, China.
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Haining, 314400, China
| | - Guo-Sheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Haining, 314400, China.
| |
Collapse
|
5
|
Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong MH, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu FJ, Zhong Z, Zhang XZ, Chen X. Biomedical polymers: synthesis, properties, and applications. Sci China Chem 2022; 65:1010-1075. [PMID: 35505924 PMCID: PMC9050484 DOI: 10.1007/s11426-022-1243-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Biomedical polymers have been extensively developed for promising applications in a lot of biomedical fields, such as therapeutic medicine delivery, disease detection and diagnosis, biosensing, regenerative medicine, and disease treatment. In this review, we summarize the most recent advances in the synthesis and application of biomedical polymers, and discuss the comprehensive understanding of their property-function relationship for corresponding biomedical applications. In particular, a few burgeoning bioactive polymers, such as peptide/biomembrane/microorganism/cell-based biomedical polymers, are also introduced and highlighted as the emerging biomaterials for cancer precision therapy. Furthermore, the foreseeable challenges and outlook of the development of more efficient, healthier and safer biomedical polymers are discussed. We wish this systemic and comprehensive review on highlighting frontier progress of biomedical polymers could inspire and promote new breakthrough in fundamental research and clinical translation.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Yun Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Meng-Hua Xiong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123 China
| | - Kuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xu Zhen
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| |
Collapse
|