1
|
Lin Y, Qian Y, Zhang X, Kuang D, Long Y, Zheng H, Nie R, Qu S, Wang H. White Fluorescent Carbon Dots for Specific Fe 3+ Detection and Imaging Applications. Chem Asian J 2025:e202401732. [PMID: 39873913 DOI: 10.1002/asia.202401732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
In recent years, carbon dots (CDs) with fluorescence imaging function have been widely used in biomedicine, electronic manufacturing and environmental monitoring. However, monochromatic fluorescence is often limited by the application environment and loses its effectiveness. Here, we carefully designed white fluorescent CDs (WF-CDs) by solvothermal method, which is used for fluorescence imaging applications under different environmental conditions. WF-CDs based on nitrogen doping can produce obvious emission peaks at 640 nm, 490 nm and 400 nm, respectively, corresponding to red, green and blue (RGB) bands in the three primary colors. The full wavelength emission was realized by changing the solvent types and pH values to adjust the emission peak intensity. WF-CDs can accurately detect Fe3+ concentration according to fluorescence extinction degree (fluorescence elimination rate reaches 95.34 %). Furthermore, WF-CDs has practical applications in cell-level fluorescence imaging, near-infrared fluorescence imaging and ultraviolet anti-counterfeiting, and has broad application prospects in the fields of nano-medicine and industrial manufacturing.
Collapse
Affiliation(s)
- Yefeng Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yong Qian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xiaoxiao Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Dazhou Kuang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yingjie Long
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Haonan Zheng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Rongrong Nie
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Songnan Qu
- Joint Key Laboratory of Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Taipa, Macau SAR, 999067, China
| | - Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Ferreira RAS, Correia SFH, Georgieva P, Fu L, Antunes M, André PS. A comprehensive dataset of photonic features on spectral converters for energy harvesting. Sci Data 2024; 11:50. [PMID: 38191564 PMCID: PMC10774306 DOI: 10.1038/s41597-023-02827-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Building integrated photovoltaics is a promising strategy for solar technology, in which luminescent solar concentrators (LSCs) stand out. Challenges include the development of materials for sunlight harvesting and conversion, which is an iterative optimization process with several steps: synthesis, processing, and structural and optical characterizations before considering the energy generation figures of merit that requires a prototype fabrication. Thus, simulation models provide a valuable, cost-effective, and time-efficient alternative to experimental implementations, enabling researchers to gain valuable insights for informed decisions. We conducted a literature review on LSCs over the past 47 years from the Web of ScienceTM Core Collection, including published research conducted by our research group, to gather the optical features and identify the material classes that contribute to the performance. The dataset can be further expanded systematically offering a valuable resource for decision-making tools for device design without extensive experimental measurements.
Collapse
Affiliation(s)
- Rute A S Ferreira
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Sandra F H Correia
- Instituto de Telecomunicações, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Petia Georgieva
- Instituto de Telecomunicações, University of Aveiro, 3810-193, Aveiro, Portugal
- Departament of Electronics, Telecommunications and Informatics, Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lianshe Fu
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mário Antunes
- Instituto de Telecomunicações, University of Aveiro, 3810-193, Aveiro, Portugal
- Departament of Electronics, Telecommunications and Informatics, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paulo S André
- Department of Electrical and Computer Engineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| |
Collapse
|
3
|
Liu F, Xu S, Gong W, Zhao K, Wang Z, Luo J, Li C, Sun Y, Xue P, Wang C, Wei L, Li Q, Zhang Q. Fluorescent Fiber-Shaped Aqueous Zinc-Ion Batteries for Bifunctional Multicolor-Emission/Energy-Storage Textiles. ACS NANO 2023; 17:18494-18506. [PMID: 37698337 DOI: 10.1021/acsnano.3c06245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Wearable smart textiles are natural carriers to enable imperceptible and highly permeable sensing and response to environmental conditions via the system integration of multiple functional fibers. However, the existing massive interfaces between different functional fibers significantly increase the complexity and reduce the wearability of the textile system. Thus, it is significant yet challenging to achieve all-in-one multifunctional fibers for realizing miniaturized and lightweight smart textiles with high reliability. Herein, as bifunctional electrolyte additives, fluorescent carbon dots with abundant zincophilic functional groups are introduced into electrolytes to develop fluorescent fiber-shaped aqueous zinc-ion batteries (FFAZIBs). Originating from effective dendrite suppression of Zn anodes and multiple active sites of freestanding Prussian blue cathodes, high energy density (0.17 Wh·cm-3) and long-term cyclability (78.9% capacity retention after 1500 cycles) are achieved for FFAZIBs. More importantly, the one-dimensional structure ensures the same luminance in all directions of FFAZIBs, enabling the form of multicolor display-in-battery textiles.
Collapse
Affiliation(s)
- Fan Liu
- School of Electronic Science & Engineering, Southeast University, Nanjing 210096, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Shuhong Xu
- School of Electronic Science & Engineering, Southeast University, Nanjing 210096, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Kaitian Zhao
- School of Electronic Science & Engineering, Southeast University, Nanjing 210096, China
| | - Zhimin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Luo
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chunsheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China
| | - Yan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, China
| | - Chunlei Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing 210096, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
4
|
Du F, Yang LP, Wang LL. Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges. J Mater Chem B 2023; 11:8117-8135. [PMID: 37555267 DOI: 10.1039/d3tb01329d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recently, carbon dots (CDs) as newly developed carbon-based nanomaterials due to advantages such as excellent photostability and easy surface functionalization have generated wide application prospects in fields such as biological imaging and chemical sensing. The multicolor emission carbon dots (M-CDs) were acquired through the selection of different carbon source precursors, change of synthesis conditions and synthesis environment. Therefore, the aim of this review is to summarize the latest research progress in polychromatic CDs from the perspectives of synthesis strategies, luminescent mechanisms, luminescent properties and applications. This review focuses on how to prepare MCDs by changing raw materials and synthesis conditions such as reaction temperature, synthesis time, synthesis pH, and synthesis solvent. This review also presents the optical properties of MCDs, concentration effects, solvent effects, pH effects, elemental doping, and surface passivation on them, as well as their creative applications in the field of sensing applications. It is anticipated that this review will serve as a guide for the development of multifunctional M-CDs and inspire future research on controllable design and preparation of M-CDs.
Collapse
Affiliation(s)
- Fangfang Du
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Liu-Pan Yang
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Li-Li Wang
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Sun H, Xia P, Shao H, Zhang R, Lu C, Xu S, Wang C. Heating-free synthesis of red emissive carbon dots through separated processes of polymerization and carbonization. J Colloid Interface Sci 2023; 646:932-939. [PMID: 37235938 DOI: 10.1016/j.jcis.2023.05.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Polymerization and carbonization are believed as two basic processes for the bottom-up synthesis of carbon dots (CDs). Since these two processes usually occur simultaneously due to the high reaction temperature and fast reaction rate, it is still a challenge to separate and control these two processes. In the present work, we reported a new room temperature method, which achieved the separated and controlled polymerization and carbonization processes. The polymerization process is realized by dissolving o-phenylenediamine (OPD) in ethanol at room temperature, and finally obtained polymer dots (PDs) without any lattice with a sphere size of 29.6 nm. The carbonization process begins in a manual way by adding concentrated sulfuric acid. After carbonization, CDs (noted as CPDs in this work) with a size of 3.6 nm and a clear lattice can be obtained. Importantly, the separated polymerization and carbonization make us possible to adjust the composition or interactions of intermediate products during the synthesis process. As a prototype, we added acetic acid (AA) additives into OPD precursors during the polymerization stage. Due to the crosslink enhanced emission (CEE) effect via hydrogen bonds which are produced by the amide groups from AA reaction products with H in the -NH3+ or aromatic ring, the resulted CPDs show improved PLQY from an initial 6.87% (without AA) to 16.47%. The current work realized the separated and controllable polymerization and carbonization processes, opening up the door for tuning the composition and interactions of intermediate products before carbonization.
Collapse
Affiliation(s)
- Hongcan Sun
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Pengfei Xia
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Haibao Shao
- School of Electronics & Information, Nantong University, Nantong 226019, People's Republic of China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, People's Republic of China
| | - Changgui Lu
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Shuhong Xu
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Chunlei Wang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| |
Collapse
|
6
|
Xin N, Gao D, Su B, Zhou T, Zhu Y, Wu C, Wei D, Sun J, Fan H. Orange-Emissive Carbon Dots with High Photostability for Mitochondrial Dynamics Tracking in Living Cells. ACS Sens 2023; 8:1161-1172. [PMID: 36795996 DOI: 10.1021/acssensors.2c02451] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Mitochondria play significant roles in maintaining a stable internal environment for cell metabolism. Hence, real-time monitoring of the dynamics of mitochondria is essential for further understanding mitochondria-related diseases. Fluorescent probes provide powerful tools for visualizing dynamic processes. However, most mitochondria-targeted probes are derived from organic molecules with poor photostability, making long-term dynamic monitoring challenging. Herein, we design a novel mitochondria-targeted probe based on carbon dots with high performance for long-term tracking. Considering that the targeting ability of CDs is related to surface functional groups, which are generally determined by the reaction precursors, we successfully constructed mitochondria-targeted O-CDs with emission at 565 nm through solvothermal treatment of m-diethylaminophenol. The O-CDs are bright with a high quantum yield of 12.61%, high mitochondria-targeting ability, and good stability. The O-CDs possess a high quantum yield (12.61%), specific mitochondria-targeting ability, and outstanding optical stability. Owing to the abundant hydroxyl and ammonium cations on the surface, O-CDs showed obvious accumulation in mitochondria with a high colocalization coefficient of up to 0.90 and remained steady even after fixation. Besides, O-CDs showed outstanding compatibility and photostability under various interruptions or long-time irradiation. Therefore, O-CDs are preferable for the long-term tracking of dynamic mitochondrial behavior in live cells. We first observed the mitochondrial fission and fusion behaviors in HeLa cells, and then, the size, morphology, and distribution of mitochondria in physiological or pathological conditions were clearly recorded. More importantly, we observed different dynamics interactions between mitochondria and lipid droplets during the apoptosis and mitophagy processes. This study provides a potential tool for exploring interactions between mitochondria and other organelles, further promoting the research on mitochondria-related diseases.
Collapse
Affiliation(s)
- Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dong Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Borui Su
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuda Zhu
- Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610065, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
7
|
Huang Q, Sun H, Lu C, Wang C, Xu S. Post-synthetic regulation of the fluorescence of CDs: insights into the fluorescence mechanism. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:353-360. [PMID: 36594675 DOI: 10.1039/d2ay01632j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring the origin of emission is fundamental in the field of carbon dots (CDs). Due to the lack of suitable in situ probing techniques, it is necessary to explore effective alternative methods that can accurately reflect the relationship between the emission and the composition of the functional groups of CDs. Herein, we propose a new method of post-synthetic treatment of CDs by photo-oxidation to investigate the origin of emission for CDs. After the addition of a photo-oxidant into pre-prepared CDs under UV irradiation, the fluorescence of CDs can be regulated from the original orange emission to the final green emission due to the damage of original functional groups and the formation of new functional groups on CDs during the post-treatment process. The abundant dynamic information about the functional groups and emissions of CDs during the visible and ready-to-monitor post-treatment process makes it possible to quantitatively analyze the origin of the emission of CDs. Our results suggest that the emission sub-peaks at 560 nm and 600 nm relate to the CD surface-state-associated -NH3+ groups, while the emission sub-peak at 537 nm or 494 nm is associated with the CD surface-state-associated -OH groups or the CD surface-state-associated carbonyl groups (CO). Under UV irradiation, the CD surface-state-associated -NH3+ groups can be continuously converted into the CD surface-state-associated -OH groups and the CD surface-state-associated carbonyl groups (CO), leading to the changed emission color of CDs.
Collapse
Affiliation(s)
- Qingchun Huang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Hongcan Sun
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Changgui Lu
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Chunlei Wang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| | - Shuhong Xu
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
| |
Collapse
|