1
|
Huang J, Wei G, Wu A, Liu D, Wang L, Luo J. Enhancing Performance and Stability of High-Temperature Proton Exchange Membranes through Multiwalled Carbon Nanotube Incorporation into Self-Cross-Linked Fluorenone-Containing Polybenzimidazole. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25994-26003. [PMID: 38739746 DOI: 10.1021/acsami.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Addressing critical challenges in enhancing the oxidative stability and proton conductivity of high-temperature proton exchange membranes (HT-PEMs) is pivotal for their commercial viability. This study uncovers the significant capacity of multiwalled carbon nanotubes (MWNTs) to absorb a substantial amount of phosphoric acid (PA). The investigation focuses on incorporating long-range ordered hollow MWNTs into self-cross-linked fluorenone-containing polybenzimidazole (FPBI) membranes. The absorbed PA within MWNTs and FPBI forms dense PA networks within the membrane, effectively enhancing the proton conductivity. Moreover, the exceptional inertness of MWNTs plays a vital role in reinforcing the oxidation resistance of the composite membranes. The proton conductivity of the 1.5% CNT-FPBI membrane is measured at 0.0817 S cm-1 at 160 °C. Under anhydrous conditions at the same temperature, the power density of the 1.5% CNT-FPBI membrane reaches 831.3 mW cm-2. Notably, the power density remains stable even after 200 h of oxidation testing and 250 h of operational stability in a single cell. The achieved power density and long-term stability of the 1.5% CNT-FPBI membrane surpass the recently reported results. This study introduces a straightforward approach for the systematic design of high-performance and robust composite HT-PEMs for fuel cells.
Collapse
Affiliation(s)
- Jinzhen Huang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Gongyi Wei
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Aogui Wu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Dong Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Jingli Luo
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
2
|
Zhang D, Liu W, Ye K, Li X. High CO and sulfur tolerant proton exchange membrane fuel cell anodes enabled by "work along both lines" mechanism of 2,6-dihydroxymethyl pyridine molecule blocking layer. J Colloid Interface Sci 2024; 653:413-422. [PMID: 37722170 DOI: 10.1016/j.jcis.2023.09.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) are hindered by their poor tolerance to CO and H2S poisoning. Herein, we report an effective method, via engineering 2,6-dihydroxymethyl pyridine (DhmPy) molecule blocking layers on Pt surface, aiming to save the poisoning issue for PEMFC anode reaction. The PEMFCs assembled by this catalyst produce a power density of 1.18 W cm-2 @ 2.0 A cm-2 and 1.32 W cm-2 @ 2.0 A cm-2, far exceeding commercial Pt/C after H2/10 ppm CO poisoning and H2/5 ppm H2S poisoning tests, respectively. Density functional theory (DFT) indicates that a coronal molecule layer with a steric confinement height (1.82 Å), constructed by DhmPy, emerges more intensive adsorption energy compared to 2,6-pyridinedicarboxamide (DcaPy) and 2,6-diacetylpyridine (DAcPy), thereby more effectively inhibits the adsorption of large-sized CO and H2S on Pt surface without affecting H2 traverse. This "work along both lines" mechanism with the resistance of both CO and H2S provides a new and promising design thought for high CO and sulfur tolerant PEMFC anodes.
Collapse
Affiliation(s)
- Dongqing Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Ke Ye
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Xiaojin Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Energy Institute, Qingdao 266101, Shandong, China.
| |
Collapse
|
3
|
Ke S, Cui B, Sun C, Qin Y, Zhang J, Dou M. Intriguing H 2S Tolerance of the PtRu Alloy for Hydrogen Oxidation Catalysis in PEMFCs: Weakened Pt-S Binding with Slower Adsorption Kinetics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47765-47774. [PMID: 36251743 DOI: 10.1021/acsami.2c13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High quality of hydrogen is the key to the long lifetime of proton-exchange membrane fuel cell (PEMFC) vehicles, while trace H2S impurities in hydrogen significantly affect their durability and fuel expense. Herein, we demonstrate a robust PtRu alloy catalyst with an intriguing H2S tolerance as the PEMFC anode, showing a stronger antipoisoning capability toward hydrogen oxidation reaction compared with the Pt/C anode. The PtRu/C-based single PEMFC shows approximately 14.3% loss of cell voltage after 3 h operation with 1 ppm of H2S in hydrogen, significantly lower than that of Pt/C-based PEMFCs (65%). By adopting PtRu/C as the anode, the H2S limit in hydrogen can be increased to 1.7 times that of the Pt/C anode, assuming that the PEMFC runs for 5000 h, which is conductive for the cost reduction of hydrogen purification. The three-electrode electrochemical test indicates that PtRu/C exhibits a slower adsorption kinetics toward S2- species with poisoning rates of 0.02782, 0.02982, and 0.03682 min-1 at temperatures of 25, 35, and 45 °C, respectively, all lower than those of Pt/C. X-ray absorption fine structure spectra indicate the weakened Pt-S binding for PtRu/C in comparison to Pt/C with a longer Pt-S bond length. Density functional theory calculation analyses reveal that adsorption energy of sulfur on the Pt surface was reduced for PtRu/C, showing 1-10% decrease at different Pt sites for (111), (110), and (100) planes, which is ascribed to the downshifted Pt d-band center caused by the ligand and strain effects due to the introduction of second metallic Ru. This work provides a valuable guide for the development of the H2S-tolerant catalysts for long-term application of PEMFCs.
Collapse
Affiliation(s)
- Shaojie Ke
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing100029, China
| | - Bolan Cui
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing100029, China
| | - Chaoyong Sun
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing100029, China
| | - Yufeng Qin
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing100029, China
| | - Jiakun Zhang
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing100029, China
| | - Meiling Dou
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
4
|
Neukum D, Baumgarten L, Wüst D, Sarma BB, Saraçi E, Kruse A, Grunwaldt J. Challenges of Green Production of 2,5-Furandicarboxylic Acid from Bio-Derived 5-Hydroxymethylfurfural: Overcoming Deactivation by Concomitant Amino Acids. CHEMSUSCHEM 2022; 15:e202200418. [PMID: 35439346 PMCID: PMC9400955 DOI: 10.1002/cssc.202200418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is highly attractive as FDCA is considered as substitute for the petrochemically derived terephthalic acid. There are only few reports on the direct use of unrefined HMF solutions from biomass resources and the influence of remaining constituents on the catalytic processes. In this work, the oxidation of HMF in a solution as obtained from hydrolysis and dehydration of saccharides in chicory roots was investigated without intermediate purification steps. The amount of base added to the solution was critical to increase the FDCA yield. Catalyst deactivation occurred and was attributed to poisoning by amino acids from the bio-source. A strong influence of amino acids on the catalytic activity was found for all supported Au, Pt, Pd, and Ru catalysts. A supported AuPd(2 : 1)/C alloy catalyst exhibited both superior catalytic activity and higher stability against deactivation by the critical amino acids.
Collapse
Affiliation(s)
- Dominik Neukum
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Lorena Baumgarten
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Dominik Wüst
- Institute of Agricultural EngineeringUniversity of HohenheimGarbenstraße 970593StuttgartGermany
| | - Bidyut Bikash Sarma
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Erisa Saraçi
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyEngesserstraße 2076131KarlsruheGermany
| | - Andrea Kruse
- Institute of Agricultural EngineeringUniversity of HohenheimGarbenstraße 970593StuttgartGermany
| | - Jan‐Dierk Grunwaldt
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyEngesserstraße 2076131KarlsruheGermany
| |
Collapse
|
5
|
Chen L, Liang X, Wang D, Yang Z, He CT, Zhao W, Pei J, Xue Y. Platinum-Ruthenium Single Atom Alloy as a Bifunctional Electrocatalyst toward Methanol and Hydrogen Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27814-27822. [PMID: 35694972 DOI: 10.1021/acsami.2c02905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The precise regulation for the structural properties of nanomaterials at the atomic scale is an effective strategy to develop high-performance catalysts. Herein, a facile dual-regulation approach was developed to successfully synthesize Ru1Ptn single atom alloy (SAA) with atomic Ru dispersed in Pt nanocrystals. High-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure demonstrated that Ru atoms were dispersed in Pt nanocrystals as single atoms. Impressively, the Ru1Ptn-SAA exhibited an ultrahigh specific activity (23.59 mA cm-2) and mass activity (2.805 mA/μg-PtRu) for methanol oxidation reaction (MOR) and exhibited excellent exchange current density activity (1.992 mA cm-2) and mass activity (4.71 mA/μg-PtRu) for hydrogen oxidation reaction (HOR). Density functional theory calculations revealed that the introduction of Ru atoms greatly reduced the reaction free energy for the decomposition of water molecules, which promoted the removal of CO* in the MOR process and adjusted the Gibbs free energy of hydrogen and hydroxyl adsorption to promote the HOR. Our work provided an effective idea for the development of high performance electrocatalysts.
Collapse
Affiliation(s)
- Ligang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing 102209, China
| | - Xin Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zuobo Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Qingdao Chuangqi Xinneng Catalytic Technology Ltd. Co., Qingdao 266041, China
| | - Chun-Ting He
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Wei Zhao
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing 102209, China
| | - Jiajing Pei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanrong Xue
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
He W, Xiang Y, Xin M, Qiu L, Dong W, Zhao W, Diao Y, Zheng A, Xu G. Investigation of multiple commercial electrocatalysts and electrocatalyst degradation for fuel cells in real vehicles. RSC Adv 2022; 12:32374-32382. [DOI: 10.1039/d2ra05682h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022] Open
Abstract
The coalescence of Pt nanoparticles during operation in a real vehicle is considered to be the main reason to weaken the ORR. The trajectories of oriented attachment were disclosed by observing the coalescence events of Pt NPs using in situ TEM.
Collapse
Affiliation(s)
- Wenhui He
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Yanjuan Xiang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Mudi Xin
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Limei Qiu
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Wenyan Dong
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Wenhui Zhao
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Yuxia Diao
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Aiguo Zheng
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Guangtong Xu
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| |
Collapse
|