1
|
Shi K, Wu C, Zhang H, Tong K, He W, Li W, Jin Z, Jung S, Li S, Wang X, Gong S, Zhang Y, Zhang D, Kang F, Chi Y, Yang C, Wei G. Enhanced Emitting Dipole Orientation Based on Asymmetric Iridium(III) Complexes for Efficient Saturated-Blue Phosphorescent OLEDs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402349. [PMID: 39137939 PMCID: PMC11481260 DOI: 10.1002/advs.202402349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/02/2024] [Indexed: 08/15/2024]
Abstract
Three novel asymmetric Ir(III) complexes have been rationally designed to optimize their emitting dipole orientations (EDO) and enhance light outcoupling in blue phosphorescent organic light-emitting diodes (OLEDs), thereby boosting their external quantum efficiency (EQE). Bulky electron-donating groups (EDGs), namely: carbazole (Cz), di-tert-butyl carbazole (tBuCz), and phenoxazine (Pxz) are incorporated into the tridentate dicarbene pincer chelate to induce high degree of packing anisotropy, simultaneously enhancing their photophysical properties. Angle-dependent photoluminescence (ADPL) measurements indicate increased horizontal transition dipole ratios of 0.89 and 0.90 for the Ir(III) complexes Cz-dfppy-CN and tBuCz-dfppy-CN, respectively. Analysis of the single crystal structure and density functional theory (DFT) calculation results revealed an inherent correlation between molecular aspect ratio and EDO. Utilizing the newly obtained emitters, the blue OLED devices demonstrated exceptional performance, achieving a maximum EQE of 30.7% at a Commission International de l'Eclairage (CIE) coordinate of (0.140, 0.148). Optical transfer matrix-based simulations confirmed a maximum outcoupling efficiency of 35% due to improved EDO. Finally, the tandem OLED and hyper-OLED devices exhibited a maximum EQE of 44.2% and 31.6%, respectively, together with good device stability. This rational molecular design provides straightforward guidelines to reach highly efficient and stable saturated blue emission.
Collapse
Affiliation(s)
- Kefei Shi
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Chengcheng Wu
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - He Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan UniversityWuhan430072China
| | - Kai‐Ning Tong
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Wei He
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Wansi Li
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
| | - Zhaoyun Jin
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Sinyeong Jung
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Siqi Li
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Xin Wang
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Shaolong Gong
- Hubei Key Lab on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan UniversityWuhan430072China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijingChina
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of ChemistryTsinghua UniversityBeijingChina
| | - Feiyu Kang
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Yun Chi
- Department of Materials Science and EngineeringDepartment of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SAR999077China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Guodan Wei
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| |
Collapse
|
2
|
Tong KN, Wu C, Wu Y, Li S, Jin Z, Shi K, Jung S, Wang X, Guan Y, Yang C, Wei G. Cascading Energy Transfer for Highly Efficient Deep-Red OLED Emission with Cyclometalated [3+2+1] Iridium Complexes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307500. [PMID: 37940631 DOI: 10.1002/smll.202307500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Indexed: 11/10/2023]
Abstract
The promising cyclometalated iridium (III) complexes have been proved to possess great potential in vacuum-deposited organic light-emitting diodes (OLEDs) applications for full-color displays and white solid-state lighting sources. Herein, based on the unique bidentate ligand of dibenzo[a,c]phenazine (dbpz) group with strong conjugated effect of aromatic rings for red emission, four novel [3+2+1] coordinated iridium (III) emissive materials have been rationally designed and synthesized. The monodentate ligands of -CN and -OCN have been effectively employed to tune the deep-red emission of 628-675 nm with high photoluminescence quantum yields up to 98%. Moreover, all devices displayed deep-red color coordinates ranging from (0.675, 0.325) to (0.716, 0.284), which is close to the standard-red color coordinates of (0.708, 0.292), as recommended by International Telecommunication Union Radiocommunication (ITU-R) BT.2020. The device based on nBuIr(dbpz)CN with an exciplex cohost has exhibited maximum external quantum efficiencies of 20.7% and good stability. With nBuIr(dbpz)CN as an effective sensitizer, the nBuIr(dbpz)OCN based phosphorescent OLED devices have successfully demonstrated cascading energy transfer processes, contributing to pure red emission with maximum luminance as high as 6471 cd m-2. Therefore, this work has been successfully demonstrated rational molecular design strategy of [3+2+1] iridium complexes to obtain highly efficient deep-red electrophosphorescent emission.
Collapse
Affiliation(s)
- Kai-Ning Tong
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chengcheng Wu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Yuan Wu
- PURI Materials, Shenzhen, 518133, China
| | - Siqi Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhaoyun Jin
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Kefei Shi
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Sinyeong Jung
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Xin Wang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | | | - Chen Yang
- PURI Materials, Shenzhen, 518133, China
| | - Guodan Wei
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
3
|
Wu C, Tong K, Shi K, Jin Z, Wu Y, Mu Y, Huo Y, Tang M, Yang C, Meng H, Kang F, Wei G. New [3+2+1] Iridium Complexes as Effective Phosphorescent Sensitizers for Efficient Narrowband Saturated-Blue Hyper-OLEDs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301112. [PMID: 37653609 PMCID: PMC10582407 DOI: 10.1002/advs.202301112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Indexed: 09/02/2023]
Abstract
Two newly designed and synthesized [3+2+1] iridium complexes through introducing bulky trimethylsiliyl (TMS) groups are doped with a terminal emitter of v-DABNA to form an coincident overlapping spectra between the emission of these two phosphors and the absorption of v-DABNA, creating cascade resonant energy transfer for efficient triplet harvesting. To boost the color quality and efficiency, the fabricated hyper-OLEDs have been optimized to achieve a high external quantum efficiency of 31.06%, which has been among the highest efficiency results reported for phosphor sensitized saturated-blue hyper-OLEDs, and pure blue emission peak at 467 nm with the full width at half maxima (FWHM) as narrow as 18 nm and the CIEy values down to 0.097, satisfying the National Institute of Standards and Technology (NIST) requirement for saturated blue OLEDs display. Surprisingly, such hyper-OLEDs have obtained the converted lifetime (LT50 ) up to 4552 h at the brightness of 100 cd m-2 , demonstrating effective Förster resonance energy transfer (FRET) process. Therefore, employing these new bulky TMS substituent [3+2+1] iridium(III) complexes for effective sensitizers can greatly pave the way for further development of high efficiency and stable blue OLEDs in display and lighting applications.
Collapse
Affiliation(s)
- Chengcheng Wu
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Kai‐Ning Tong
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Kefei Shi
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Zhaoyun Jin
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Yuan Wu
- PURI Materials, IncShenzhen518133China
| | - Yingxiao Mu
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Yanping Huo
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Man‐Chung Tang
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Chen Yang
- PURI Materials, IncShenzhen518133China
| | - Hong Meng
- School of Advanced MaterialsShenzhen Graduate SchoolPeking UniversityShenzhen518055China
| | - Feiyu Kang
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Guodan Wei
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| |
Collapse
|
4
|
Jayabharathi J, Thanikachalam V, Thilagavathy S. Phosphorescent organic light-emitting devices: Iridium based emitter materials – An overview. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
5
|
Kundu D, Del Rio N, Cordier M, Vanthuyne N, Puttock EV, Meskers SCJ, Williams JAG, Srebro-Hooper M, Crassous J. Enantiopure cycloplatinated pentahelicenic N-heterocyclic carbenic complexes that display long-lived circularly polarized phosphorescence. Dalton Trans 2023; 52:6484-6493. [PMID: 37096384 DOI: 10.1039/d3dt00577a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The preparation of the first enantiopure cycloplatinated complexes bearing a bidentate, helicenic N-heterocyclic carbene and a diketonate ancillary ligand is presented, along with their structural and spectroscopic characterization based on both experimental and computational studies. The systems exhibit long-lived circularly polarized phosphorescence in solution and in doped films at room temperature, and also in a frozen glass at 77 K, with dissymmetry factor glum values ≥10-3 in the former and around 10-2 in the latter.
Collapse
Affiliation(s)
- Debsouri Kundu
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France.
| | - Natalia Del Rio
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France.
| | - Marie Cordier
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France.
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284 Marseille, France
| | - Emma V Puttock
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Stefan C J Meskers
- Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, NL 5600, The Netherlands
| | | | - Monika Srebro-Hooper
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Jeanne Crassous
- Université de Rennes, CNRS, ISCR - UMR 6226, 35000 Rennes, France.
| |
Collapse
|
6
|
Lou X, Tian Y, Wang Z. Synthesis, structures, and photophysical properties of two Cu(I) complexes supported by N-heterocyclic carbene and phosphine ligands. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Two new cationic four-coordinate Cu(I) complexes supported by different chelating N-heterocyclic carbene ligands and the diphosphine ligand bis[2-(diphenylphosphino)phenyl]ether (POP) have been synthesized. The chemical structures of both complexes have been characterized by 1H NMR, 13C NMR, 31P NMR, and mass spectroscopy, and the crystal structure of one complex has been determined by single-crystal X-ray diffraction. Results of theoretical calculations indicate that the lowest energy electronic transitions of these complexes are mainly the metal-to-ligand charge transfer and ligand-to-ligand charge transfer transitions. The complexes in solid state show intense emissions with high photoluminescence quantum yields. The photophysical behavior at 298 and 77K shows that emissions of these complexes at room temperature are thermally activated delayed fluorescence mixed with phosphorescence.
Collapse
Affiliation(s)
- Xinhua Lou
- School of Food and Drug, Luoyang Normal University , Luoyang 471934 , P. R. China
| | - Yunfei Tian
- College of Chemistry and Chemical Engineering, Luoyang Normal University , Luoyang 471934 , P. R. China
| | - Zhiqiang Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University , Luoyang 471934 , P. R. China
| |
Collapse
|
7
|
Li G, Li N, Cao Y, Shi C, Liu X, Zeng R, Wu M, Li Q, Yang C, Yuan A. Deep-Red/Near-Infrared to Blue-Green Phosphorescent Iridium(III) Complexes Featuring Three Differently Charged (0, -1, and -2) Ligands: Structures, Photophysics, and Organic Light-Emitting Diode Application. Inorg Chem 2022; 61:10548-10556. [PMID: 35763374 DOI: 10.1021/acs.inorgchem.2c01443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have designed and synthesized a new family of neutral phosphorescent iridium(III) complexes (Ir1-Ir6) featuring three differently charged (0, -1, and -2) ligands, in which biphenyl (bp) is used as a dianionic (-2) ligand, 4,6-difluorophenylpyridine (dfppy) or 1-phenylisoquinoline (piq) is used as a monoanionic (-1) ligand, and 2,2'-bipyridyl (bpy), 1,10-phenanthroline (phen), 1,2-bis(diphenylphosphanyl)benzene (dppb), or 1,2-bis(diphenylphosphanyl)ethane (dppe) is used as a neutral (0) ligand. The X-ray structures confirm that three coordination carbon atoms of all complexes assume a facial geometry, which can be beneficial to the stability of the structure. More importantly, the emitting color of the complexes can be tuned from deep red/near-infrared (NIR) (680-710 nm) to blue-green (466-496 nm) with different monoanionic (-1) ligands and neutral (0) ligands. Interestingly, the complex Ir5 shows a significant aggregation-induced phosphorescent emission effect, while Ir6 with a similar structure shows an opposite aggregation-caused quenching effect, mainly due to slight differences in the neutral (0) ligand structure. Notably, all deep red/NIR-emitting complexes (Ir1-Ir4) exhibit a distinct charge transfer (CT) excited state from the dianionic (-2) ligand to the neutral (0) ligand according to density functional theory calculations, whereas the excited state of blue-green-emitting complexes (Ir5-Ir6) displays the CT from the dianionic (-2) ligand to the monoanionic (-1) ligand. Considering better stability and optical performance, the deep red-emitting complexes (Ir2 and Ir4) with a simple structure are used as emitting layers of organic light-emitting diode devices and achieved good maximum external quantum efficiency (4.9 and 5.8%) peaking at 676 and 655 nm, respectively, with a very low turn-on voltage (2.5 V). This research provides a good strategy for the design of phosphorescent iridium complexes based on three differently charged (0, -1, and -2) ligands and their optoelectric applications.
Collapse
Affiliation(s)
- Gang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Nengquan Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yibo Cao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Chao Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Xinyu Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Ruoqi Zeng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Meng Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Qiuxia Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Chuluo Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| |
Collapse
|