1
|
Alam N, Mondal S, Ojha N, Sahoo S, Zeyad MT, Kumar S, Sarma D. Self-template impregnated silver nanoparticles in coordination polymer gel: photocatalytic CO 2 reduction, CO 2 fixation, and antibacterial activity. NANOSCALE 2024; 17:428-439. [PMID: 39565063 DOI: 10.1039/d4nr03254c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
CO2 fixation and light-assisted conversion of CO2 in the presence of water into fuels and feedstocks are clean and sustainable techniques to alleviate the energy crisis and global climate change. In this regard, herein, a waterborne multifunctional metal-organic coordination polymer gel (Ag@GMP) was prepared from silver nitrate and guanosine 5'-monophosphate. Electron microscopy exhibits that Ag@GMP has a flower-like structure, which is composed of vertically grown sheets, and corresponding high magnification images display the presence of silver nanoparticles on the vertically grown sheets. Ag@GMP demonstrates remarkable photocatalytic performance, achieving a CO2 conversion rate of 18.6 μmol g-1 with approximately 85% selectivity towards CO at ambient temperature without using sacrificial agents. In situ diffuse reflectance infrared Fourier transform spectroscopy was employed to elucidate the proposed mechanism for photocatalytic CO2 reduction. Additionally, Ag@GMP exhibits significant catalytic activity in the fixation of CO2 with epoxides, leading to the formation of valuable chemicals under atmospheric pressure. Ag@GMP demonstrated efficient antibacterial activity against both Gram-negative and Gram-positive bacteria. The highest zone of inhibition was observed against S. aureus MTCC 3160 (15.83 ± 1.1 mm), and for E. coli, P. aeruginosa PAO1, and B. subtilis, it was found to be 12.66 ± 0.9, 14.33 ± 0.8 and 12.8 ± 0.8 mm, respectively.
Collapse
Affiliation(s)
- Noohul Alam
- Solid State and Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Sumit Mondal
- Solid State and Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Niwesh Ojha
- Gas-solid Interaction Laboratory, Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihar 801106, India
| | - Subham Sahoo
- Solid State and Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agricultural Science, Aligarh Muslim University, Aligarh, India
| | - Sushant Kumar
- Gas-solid Interaction Laboratory, Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihar 801106, India
| | - Debajit Sarma
- Solid State and Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| |
Collapse
|
2
|
Sharma A, Kaur N, Singh N. An Encyclopedic Compendium on Chemosensing Supramolecular Metal-Organic Gels. Chem Asian J 2024; 19:e202400258. [PMID: 38629210 DOI: 10.1002/asia.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical approach are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, 160014, Chandigarh, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| |
Collapse
|
3
|
Munjal R, Kyarikwal R, Sarkar S, Nag P, Vennapusa SR, Mukhopadhyay S. A Siderophore Mimicking Gelation Component for Capturing and Self-Separation of Fe(III) from an Aqueous Solution of Mixture of Metal Ions. Inorg Chem 2024; 63:7089-7103. [PMID: 38573755 DOI: 10.1021/acs.inorgchem.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The carbohydrazide-based gelation component N2,N4,N6-(1,3,5-triazine-2,4,6-triyl)tris(benzene-1,3,5-tricarbohydrazide) (CBTC) was synthesized and characterized using various spectroscopic tools. CBTC and trimesic acid (TMA) get self-assembled to form metallogel with Fe3+, specifically through various noncovalent interactions in a DMSO and H2O mixture. The self-assembly shows remarkable specificity toward Fe(III) among different transition metal salts. It is pertinent to point out that the binding specificity for Fe3+ can also be found in nature in the form of siderophores, as they are mainly involved in scavenging iron selectively from the surroundings. DFT studies have been used to investigate the possible interaction between the different components of the iron metallogel. To determine the selectivity of CBTC for iron, CBTC, along with trimesic acid, is used to interact with other metal ions, including Fe(III) ions, in a single system. The gelation components CBTC and TMA selectively bind with iron(III), which leads to the formation of metallogel and gets separated as a discrete layer, leaving the other metal ions in the solution. Therefore, CBTC and TMA together show iron-scavenging properties. This selective scavenging property is explored through FE-SEM, XPS, PXRD, IR, and ICP-AES analysis. The FE-SEM analysis shows a flower-petal-like morphology for the Fe(III) metallogel. The resemblance in the CBTC-TMA-Fe metallogel and metallogel obtained from the mixture of different metal salts is established through FE-SEM images and XPS analysis. The release of iron from the metallogel is achieved with the help of ascorbic acid, which converts Fe3+ to Fe2+. In biological systems, iron also gets released similarly from siderophores. This is the first report where the synthesized gelation component CBTC molecule is capable of scavenging out iron in the form of metallogel and self-separating from the aqueous mixture in the presence of various other metal ions.
Collapse
Affiliation(s)
- Ritika Munjal
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| | - Reena Kyarikwal
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| | - Sayantan Sarkar
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| | - Probal Nag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Suman Mukhopadhyay
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India
| |
Collapse
|
4
|
Karmakar PD, Velu K, Vineeth Kumar CM, Pal A. Advances in injectable hydrogel: Design, functional regulation, and biomedical applications. POLYM ADVAN TECHNOL 2024; 35. [DOI: 10.1002/pat.6193] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/13/2023] [Indexed: 01/06/2025]
Abstract
AbstractRecently, injectable hydrogels have been considered smart materials and have been widely researched for their use as scaffolds. They resemble the extracellular matrix of native tissue and have the capability for homogeneous mixing with therapeutic agents. It can be implanted into living bodies with minimal invasiveness and usability for irregularly shaped sites. Such unique features make the injectable hydrogels as promising materials in tissue engineering, drug delivery system, and gene/protein delivery. This review article provides a comprehensive overview of the different mechanisms employed in the preparation of injectable hydrogel, as well as a detailed exploration of its applications in the biomedical field. Furthermore, the article highlights the critical importance of developing injectable hydrogels as market‐viable products, highlighting their potential impact in the field of regenerative medicine.
Collapse
Affiliation(s)
- Puja Das Karmakar
- Research and Services Division of Materials Data and Integrated System (MaDIS) National Institute for Materials Science (NIMS) Tsukuba Japan
| | - Karthick Velu
- Centre for Ocean Research, Sathyabama Institute of Science and Technology Chennai India
| | - C. M. Vineeth Kumar
- Centre for Ocean Research, Sathyabama Institute of Science and Technology Chennai India
| | - Aniruddha Pal
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Japan
| |
Collapse
|
5
|
Saha E, Rahaman A, Bhadra S, Mitra J. Exploring amine-rich supramolecular silver(I) metallogels for autonomous self-healing and as catalysts for a three component coupling reaction. Dalton Trans 2023; 52:15530-15538. [PMID: 37701939 DOI: 10.1039/d3dt01654d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
A series of Ag(I) supramolecular organo-aqueous gels have been synthesized in the presence of an amine-rich triazole ligand as a gelator. Judicious choice of the triazole derivative and counter anion allows a desired spatial orientation of the pendant amine functionality to accentuate the gelation ability and autonomous self-healability via hydrogen bonding. In addition, the hydrogen bond donors, i.e. pendant -NH2 groups, offer a critical proximity of counter anions to the Lewis acidic Ag(I) and the reactants for promoting a three component coupling reaction of an aldehyde, a terminal alkyne and an amine, giving expedient access to propargyl amines, with remarkable functional group tolerance for both aromatic and aliphatic aldehydes, and aryl acetylenes. Experiments substantiate the pivotal role of counter anions and H-bonding interactions in the observed preference for propargylamines over the diacetylene by-product. Our catalyst is robust, bench-stable, and recyclable, and demonstrates a catalytic efficiency comparable to or better than those of reported systems. The catalyst was found equally effective for the gram-scale synthesis of propargylamines. Our approach lies at the intersection of metal-based, H-bond-mediated counter anion-tuned catalysis, evincing a potential for the development of purpose-built supramolecular gels for desired catalytic applications in the future.
Collapse
Affiliation(s)
- Ekata Saha
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ajijur Rahaman
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sukalyan Bhadra
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Joyee Mitra
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
6
|
Gong H, Zhang J, Li Q, Du M, Liu S, Jiang L, Shi XL. Cu-Based Catalysts Supported on H 3PO 4-Activated Coffee Biochar for Selective Reduction of Nitroaromatics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37314820 DOI: 10.1021/acs.langmuir.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selective reduction of nitroaromatics to the corresponding aromatic amines is extremely an attractive chemical process for both fundamental research and potential commercial applications. Herewith, we report that a highly dispersed Cu catalyst supported on H3PO4-activated coffee biochar and the resulting Cu/PBCR-600 catalyst show complete conversion of the nitroaromatics and >97.0% selectivity for the corresponding aromatic amines. The TOF of catalyzing the reduction of nitroaromatics (1.55-460.74 min-1) is approximately 2 to 15 times higher than those of previously reported non-noble and even noble metal catalysts. Additionally, Cu/PBCR-600 also shows high stability in catalytic recycles. Furthermore, it exhibits long-term catalytic stability (660 min) for practical application in a continuous-flow reactor. The characterizations and activity tests reveal that Cu0 existing in Cu/PBCR-600 acts as an active site in nitroaromatics reduction. Also, the further characterization by FTIR and UV-vis demonstrates that N, P co-doped coffee biochar could selectively adsorb and activate the nitro group of nitroaromatics.
Collapse
Affiliation(s)
- Honghui Gong
- Synergism Innovative Center of Coal Safety Production in Henan Province, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China
| | - Juan Zhang
- Synergism Innovative Center of Coal Safety Production in Henan Province, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China
| | - Qi Li
- Synergism Innovative Center of Coal Safety Production in Henan Province, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China
| | - Mengmeng Du
- Synergism Innovative Center of Coal Safety Production in Henan Province, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China
| | - Shuangshuang Liu
- Synergism Innovative Center of Coal Safety Production in Henan Province, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China
| | - Lijuan Jiang
- Synergism Innovative Center of Coal Safety Production in Henan Province, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China
| | - Xian-Lei Shi
- Synergism Innovative Center of Coal Safety Production in Henan Province, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, P. R. China
| |
Collapse
|
7
|
A novel citric acid facilitated supramolecular Zinc(II)-metallogel: Toward semiconducting device applications. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
A "heat set" Zr-Diimide based Fibrous Metallogel: Multiresponsive Sensor, Column-based Dye Separation, and Iodine Sequestration. J Colloid Interface Sci 2023; 633:441-452. [PMID: 36462267 DOI: 10.1016/j.jcis.2022.11.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Sensing and monitoring hazardous contaminants in water and radioactive iodine sequestration is pivotal due to their detrimental impact on biological ecosystems. In this context, herein, a water stable zirconium-diimide based metallogel (Zr@MG) with fibrous columnar morphology is accomplished through the "heat set" method. The presence of diimide linkage with long aromatic chain manifests active luminescence properties in the linker as well as in the supramolecular framework structure. The as-synthesized Zr@MG xerogel can selectively detectCr2O72- (LOD = 0.52 ppm) and 2,4,6-trinitrophenol (TNP) (LOD = 80.2 ppb) in the aqueous medium. The Zr@MG paper strip-based detection for Cr2O72- and nitro explosive makes this metallogel reliable and an attractive luminescent sensor for practical use. Moreover, a column-based dye separation experiment was performed to show selective capture of positively charged methylene blue (MB) dye with 98 % separation efficiency from the mixture of two dyes. Also, the Zr@MG xerogel showed effective iodine sequestration from the vapor phase (232 wt%).
Collapse
|
9
|
Mendoza Villicana A, Gochi Ponce Y, Grande D, José Manuel CB, Zizumbo López A, González Joaquín MC, Chávez Santoscoy RA, Paz González JA, Bogdanchikova N, Pérez González GL, Villarreal-Gómez LJ. Evaluation of strategies to incorporate silver nanoparticles into electrospun microfibers for the preparation of wound dressings and their antimicrobial activity. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2023.2181703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Anayanci Mendoza Villicana
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | - Yadira Gochi Ponce
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | - Daniel Grande
- Département Chimie Moléculaire et Matériaux Macromoléculaires (C3M), Institut de Chimie et des Matériaux Paris-Est, Paris, France
| | | | - Arturo Zizumbo López
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | - Marlon César González Joaquín
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | | | - Juan Antonio Paz González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotenología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, México
| | - Graciela Lizeth Pérez González
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, México
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, México
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| |
Collapse
|
10
|
Fan H, Li A, Li J, Du Z, Wang L, Zhou X, He P, Ren Z. Construction of Tetrazole Derivatives via Sequential Ugi‐N
3
/Pd‐Catalyzed Isocyanide Insertion Reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202204294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hao‐Jie Fan
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - A‐Ting Li
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - Jun Li
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - Zi‐Qi Du
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - Long Wang
- College of Materials and Chemical Engineering China Three Gorges University Yichang Hubei 443002 P. R. of China
- Hubei Three Gorges Laboratory Yichang Hubei 443007 P. R. of China
| | - Xian‐Min Zhou
- Hubei Institute of Aerospace Chemical Technology Xiangyang Hubei 441053 P. R. of China
| | - Ping He
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - Zhi‐Lin Ren
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
- College of Materials and Chemical Engineering China Three Gorges University Yichang Hubei 443002 P. R. of China
| |
Collapse
|