1
|
Zhang W, He X, He C. The "d-p orbital hybridization"-guided design of novel two-dimensional MOFs with high anchoring and catalytic capacities in Lithium - Sulfur batteries. J Colloid Interface Sci 2025; 678:540-548. [PMID: 39214006 DOI: 10.1016/j.jcis.2024.08.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The energy system of lithium-sulfur batteries is quite promising, however, lithium-sulfur batteries still suffer from considerable problems, such as the abominable shuttle effect of polysulfides (LiPSs), the low conductivity of the solid-phase products, the slow redox kinetics during charging and discharging, and the volume expansion. Herein, the hybridization pattern between the d-orbitals of various transition metal atoms and the p-orbitals of sulfides is revealed grounded in the theory of density function, which explains the high adsorption strength of two-dimensional metal-organic frameworks (MOFs) with LiPSs and accelerates the screening of high-performance anchoring and catalytic materials. The results elucidate that the coordinated transition metal-organic frameworks (Mo-NH MOF) monolayers increase the capacity of LiPSs to anchor by forming more π-bonds from the hybridization of the S p orbitals and Mo d orbitals. Notably, Mo-NH MOF exhibits bifunctional catalytic activity for sulfur reduction as well as Li2S decomposition reactions during charging and discharging, which improves the conversion efficiency of redox reactions. As a result, new MOF materials featuring unique active centers and the potential mechanism by which the active centers modulate the performance of the substrate materials are revealed, and this finding may accelerate the development of high-performance Li-S batteries.
Collapse
Affiliation(s)
- Wenxue Zhang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Xuan He
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Cheng He
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Wu C, Zhu H, Jia S, Xia J, Xu W, Liu P, Zou W, Suo B, Meeladi G, Li Y. Theoretical Design and Study of a Single-Atom Catalyst in Lithium-Sulfur Batteries: Edge-Type FeN 4 Active Site Electron Density Redistribution Driven by Heteroatoms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53729-53739. [PMID: 39316025 DOI: 10.1021/acsami.4c09435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Lithium-sulfur (Li-S) batteries are considered to be the most promising next-generation high energy density storage systems. However, they still face challenges, such as the shuttle effect of lithium polysulfides (LiPSs) and slow sulfur oxidation-reduction kinetics. In this work, heteroatom (P and S)-doped edge-type Fe single-atom catalytic materials (FeN4S2/P2-DG) for sulfur reduction reactions (SRRs) and sulfur oxidation reactions in Li-S batteries are investigated using density functional theory calculations. Theoretical analysis suggests that compared to planar Fe-N4 fragments, the charge density accumulation around edge-type Fe-N4 fragments in S- or P-doped structures is higher. Furthermore, the doping of P or S reduces the electron filling state of Fe_3d orbitals, leading to a decrease in electron occupancy in the antibonding orbitals, which is beneficial for the formation of d-p orbital hybridization, strengthening the anchoring strength of FeN4P2/S2-DG for S8/LiPSs. Specifically, FeN4P1,2-DG showed the lowest free energy barriers (0.57 eV) for SRRs and reduced the dissociation energy barrier of Li2S from 1.85 eV (for planar FeN4-G) to 0.96 eV during the charging process, demonstrating excellent catalytic ability. Additionally, this theoretical study provides further insights into the application of graphene-supported single-atom catalyst materials as anchoring materials for Li-S batteries.
Collapse
Affiliation(s)
- Chou Wu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069 Shaanxi, China
| | - Haiyan Zhu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069 Shaanxi, China
| | - Shaobo Jia
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069 Shaanxi, China
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| | - Jiezhen Xia
- Department of Physics, School of Science, Tibet University, 850000 Lhasa, China
| | - Wanlin Xu
- Department of Physics, School of Science, Tibet University, 850000 Lhasa, China
| | - Ping Liu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069 Shaanxi, China
| | - Wenli Zou
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069 Shaanxi, China
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069 Shaanxi, China
| | - Ghulam Meeladi
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, 710069 Shaanxi, China
| | - Yawei Li
- North China Electric Power University, Institute of Advanced Materials, 102206 Beijing, China
| |
Collapse
|
3
|
Mu Y, Nyakuchena J, Wang Y, Wilkes JR, Luo T, Goldstein M, Elander B, Mohanty U, Bao JL, Huang J, Wang D. Sulfurized Two-Dimensional Conductive Metal-Organic Framework as a High-Performance Cathode Material for Rechargeable Mg Batteries. Angew Chem Int Ed Engl 2024; 63:e202409286. [PMID: 39018503 DOI: 10.1002/anie.202409286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024]
Abstract
Rechargeable Mg batteries are a promising energy storage technology to overcome the limitations inherent to Li ion batteries. A critical challenge in advancing Mg batteries is the lack of suitable cathode materials. In this work, we report a cathode design that incorporates S functionality into two-dimensional metal-organic-frameworks (2D-MOFs). This new cathode material enables good Mg2+ storage capacity and outstanding cyclability. It was found that upon the initial Mg2+ insertion and disinsertion, there is an apparent structural transformation that crumbles the layered 2D framework, leading to amorphization. The resulting material serves as the active material to host Mg2+ through reduction and/or oxidation of S and, to a limited extent, O. The reversible nature of S and O redox chemistry was confirmed by spectroscopic characterizations and validated by density functional calculations. Importantly, during the Mg2+ insertion and disinsertion process, the 2D nature of the framework was maintained, which plays a key role in enabling the high reversibility of the MOF cathode.
Collapse
Affiliation(s)
- Yu Mu
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts, 02467, USA
| | - James Nyakuchena
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, 53201, USA
| | - Yang Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts, 02467, USA
| | - James R Wilkes
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts, 02467, USA
| | - Tongtong Luo
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts, 02467, USA
| | - Michael Goldstein
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts, 02467, USA
| | - Brooke Elander
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts, 02467, USA
| | - Udayan Mohanty
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts, 02467, USA
| | - Junwei Lucas Bao
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts, 02467, USA
| | - Jier Huang
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts, 02467, USA
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, 53201, USA
| | - Dunwei Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill, Massachusetts, 02467, USA
| |
Collapse
|
4
|
Wang J, Liu Z, Zhao Y, Dai Z, Hua J, Zhao M. Two-dimensional phosphorus carbides (β-PC) as highly efficient metal-free electrocatalysts for lithium-sulfur batteries: a first-principles study. Phys Chem Chem Phys 2024; 26:21642-21652. [PMID: 39087322 DOI: 10.1039/d4cp01881h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Li-S batteries are considered as the next-generation batteries due to their exceptional theoretical capacity. However, their practical application is hampered by the shuttling effects of lithium polysulfides (LiPSs) and the sluggish Li2S decomposition, particularly the slow conversion from Li2S2 to Li2S. Addressing these challenges, the quest for effective catalysts that can accelerate the conversion of LiPSs and enhance the performance of Li-S batteries is crucial. In this study, we explored the electrocatalytic activity of two-dimensional phosphorus carbides (β0-PC and β1-PC) in Li-S batteries based on first-principles calculations. Our findings reveal that these materials demonstrate optimal binding strengths (ranging from 1.09 to 1.83 eV) with long-chain LiPSs, effectively preventing them from dissolving into the electrolyte. Additionally, they show remarkable catalytic activity during the sulfur redox reaction (SRR), with ΔG being only 0.37 eV for β0-PC and 0.13 eV for β1-PC. The low energy barrier induced by β-PC enhances ion migration barrier and significantly expedites the charge/discharge cycles of Li-S batteries. Furthermore, we investigated the conversion dynamics of Li2S2 to Li2S, employing the computational lithium electrode (CLE) model. The excellent performance in these aspects underscores the potential of these materials as electrocatalysts for Li-S batteries, paving the way for advanced high-efficiency energy storage solutions.
Collapse
Affiliation(s)
- Junru Wang
- Department of Physics, Yantai University, Yantai 264005, Shandong, China.
| | - Zhichao Liu
- Department of Physics, Yantai University, Yantai 264005, Shandong, China.
| | - Yinchang Zhao
- Department of Physics, Yantai University, Yantai 264005, Shandong, China.
| | - Zhenhong Dai
- Department of Physics, Yantai University, Yantai 264005, Shandong, China.
| | - Juan Hua
- Department of Physics, Yantai University, Yantai 264005, Shandong, China.
| | - Mingwen Zhao
- School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
5
|
Xu W, Feng T, Xia J, Cao R, Wu Q. Single-atom catalysts based on C 2N for sulfur cathodes in Na-S batteries: a first-principles study. Phys Chem Chem Phys 2024; 26:15657-15665. [PMID: 38764420 DOI: 10.1039/d4cp00815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Several major roadblocks, including the "shuttle effect" caused by the dissolved higher-order sodium polysulfides (NaPSs), extremely poor conductivity of sulfur cathodes, and sluggish conversion kinetics of charging-discharging reactions, have hindered the commercialization of sodium-sulfur batteries (NaSBs). In our study, representative C2N-based single-atom catalysts (SACs), TM@C2N (TM = Fe, Ni and V), are proposed to improve the comprehensive performance of NaSBs. Based on first-principles calculations, we first discuss in detail the anchoring behavior of all adsorption systems, TM@C2N/(S8 and NaPSs). The results indicate that compared to pristine C2N, TM@C2N substrates exhibit a stronger capability to capture S8/NaPSs clusters through physical/chemical binding, with V@C2N showing the most outstanding capability ranging from -2.37 to -5.03 eV. The density of states analysis reveals that metallic properties can be well maintained before and after adsorption of polysulfides. More importantly, TM@C2N configurations can greatly reduce the energy barriers of charging and discharging reactions, thereby accelerating the conversion efficiency of NaSBs. It is worth mentioning that V@C2N has lower charge-discharge energy barriers and Na ion migration rates, since the embedded TM atom weakens the strong binding of Na+ in the N6 cavity of C2N. The intrinsic mechanism analysis reveals that the interaction between the d orbitals of V and the p orbitals of S leads to the weakening of Na-S bonds, which can not only effectively inhibit the shuttle effect, but also promote the dissociation of Na2S. Overall, this work not only offers excellent catalytic materials, but also provides vital guidance for designing SACs in NaSBs.
Collapse
Affiliation(s)
- Wanlin Xu
- Department of Physics, College of Science, Tibet University, Lhasa 850000, China.
- Tibet key Laboratory of Plateau Oxygen and Living Environment, College of Science, Tibet University, Lhasa 850000, China
| | - Tengrui Feng
- Department of Physics, College of Science, Tibet University, Lhasa 850000, China.
- Tibet key Laboratory of Plateau Oxygen and Living Environment, College of Science, Tibet University, Lhasa 850000, China
| | - Jiezhen Xia
- Department of Physics, College of Science, Tibet University, Lhasa 850000, China.
- Tibet key Laboratory of Plateau Oxygen and Living Environment, College of Science, Tibet University, Lhasa 850000, China
| | - Rong Cao
- Department of Physics, College of Science, Tibet University, Lhasa 850000, China.
- Tibet key Laboratory of Plateau Oxygen and Living Environment, College of Science, Tibet University, Lhasa 850000, China
| | - Qi Wu
- Department of Physics, College of Science, Tibet University, Lhasa 850000, China.
- Tibet key Laboratory of Plateau Oxygen and Living Environment, College of Science, Tibet University, Lhasa 850000, China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China
| |
Collapse
|
6
|
Xia J, Cao R, Xu W, Wu Q. Regulating the coordination environment of single atom catalysts anchored on C 3N monolayer for Li-S battery by first-principles calculations. J Colloid Interface Sci 2024; 658:795-804. [PMID: 38154242 DOI: 10.1016/j.jcis.2023.12.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/25/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Owing to the extremely high theoretical specific capacity and energy density, the catalytic materials of lithium-sulfur (Li-S) batteries are widely explored. The "shuttle effect", poor electrode conductivity, and slow charge-discharge reaction dynamics are some of the key issues that have seriously hampered their commercialization process. Herein, based on the density-functional-theory (DFT), the catalytic performances of a series of single-atom catalysts (SACs) designed by regulating the N-content around coordination center in C3N (TM@N2C2/N3C/N4-C3N (TM = Ti, V, Fe, Co, Ni)), are systematically analyzed and evaluated. Among all the constructed SACs, Ti-centered configurations with fewer d electrons, especially for the Ti@N2C2-C3N, have the remarkable catalytic effect in improving the electron conductivity, trapping soluble polysulfides and accelerating the redox reaction. The in-depth mechanism indicates that the interaction between d orbital of Ti, mainly the splitting [Formula: see text] , and p orbital of S is the key factor for achieving high-effective adsorption. More importantly, the integral value of crystal orbital Hamiltonian population (ICOHP) of the Li-S bond in the adsorbed Li2S can serve as an excellent descriptor for evaluating the overall catalytic ability of substrates. Our work has vital guiding significance for designing high-performance SACs of Li-S batteries.
Collapse
Affiliation(s)
- Jiezhen Xia
- Department of Physics, School of Science, Tibet University, Lhasa 850000, China; Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
| | - Rong Cao
- Department of Physics, School of Science, Tibet University, Lhasa 850000, China; Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
| | - Wanlin Xu
- Department of Physics, School of Science, Tibet University, Lhasa 850000, China; Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
| | - Qi Wu
- Department of Physics, School of Science, Tibet University, Lhasa 850000, China; Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China; Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China.
| |
Collapse
|
7
|
Liu S, Huang R, Hou J, Duan Q. Theoretical study on the superconductivity of graphene-like TMB 6 (TM = Cr, Fe and Co) monolayer and its potential anchoring and catalytic properties for lithium-sulfur batteries. Phys Chem Chem Phys 2023; 25:29182-29191. [PMID: 37870596 DOI: 10.1039/d3cp01964k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
In recent years, two-dimensional materials have aroused enormous interest owing to their superior electrochemical performance, abundant exposed active sites, high specific surfaces and so on. Unlike many stable allotropes, honeycomb hexagonal borophene is kinetically unstable. In this study, we introduce transition metal atoms (Cr, Fe and Co) to stabilize honeycomb hexagonal borophene, forming stable graphene-like TMB6 (TM = Cr, Fe and Co) monolayers. Moreover, we explored the possibility of superconductivity and the anchoring materials of lithium-sulfur batteries using the first-principles density functional theory (DFT) calculation. Our results show that CoB6 exhibited the best superconductivity with a superconducting transition temperature of 33.3 K. Furthermore, CoB6 and FeB6 are promising anchoring materials because of the suppression of lithium polysulfides shuttling in lithium-sulfur batteries because they can accelerate sulfur reduction reaction kinetics.
Collapse
Affiliation(s)
- Siqi Liu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.
| | - Rongfang Huang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.
| | - Jianhua Hou
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.
- Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun 130022, P. R. China
| | - Qian Duan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.
- Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun 130022, P. R. China
| |
Collapse
|
8
|
Zhang Q, Yang YL, Guo D, Hong JM. Cu 3(hexaamino triphenylhexane) 2/reduced graphene oxide composites with boosting electron-transfer properties for acetaminophen electrocatalytic degradation. CHEMOSPHERE 2023; 338:139444. [PMID: 37442382 DOI: 10.1016/j.chemosphere.2023.139444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Electron-transfer properties, as great contributors for electrocatalytic oxidation on the anode, are crucial to pollution degradation. The strong relationship between electron-transfer properties and active species (such as radicals) generation of anode catalysts suggests a new strategy for pollution-degradation efficiency improvement. In this study, a novel composite of Cu3(hexaamino triphenylhexane)2 [Cu3(HITP)2] and reduced graphene oxide (RGO) was synthesized to construct electron-transfer pathways between the two layers. Benefiting from the connection formed through RGO-O-N-Cu, the electron transfer from RGO to Cu3(HITP)2 was accelerated. The resettled charge distribution led the C atoms in the RGO layer, and the Cu and C atoms in Cu3(HITP)2 layer acted as the main surface active sites. O2•-, 1O2, and reactive chlorine were then triggered to boost the degradation of acetaminophen. The source of O2•- and 1O2 was more likely from surface oxygen groups rather than dissolved O2. Overall, this research provided a perspective proof of conductive Cu3(HITP)2/RGO composite construction with 2D/2D structure for electrocatalytic-oxidation improvement.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Yan Ling Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Die Guo
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Jun-Ming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
9
|
Qi S, Li C, Wang J, Song X, Zhao M, Chen G. Deciphering the Influence of Anionic Electrons of Surface-Functionalized Two-Dimensional Electrides in Lithium-Sulfur Batteries. J Phys Chem Lett 2023; 14:7992-7999. [PMID: 37650655 DOI: 10.1021/acs.jpclett.3c01975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Using transition metal compounds as sulfur hosts is regarded as a promising approach to suppress the polysulfide shuttle and accelerate redox kinetics for lithium-sulfur (Li-S) batteries. Herein, we report that a new kind of compound, electrides (exotic ionic crystalline materials in which electrons serve as anions), is efficient sulfur hosts for Li-S batteries for the first time. Based on the first-principles calculations, we found that two-dimensional (2D) electrides M2C (M = Sc, Y) exhibit unprecedentedly strong binding strength toward sulfur species and surface functionalization is necessary to passivate their activity. The 2D electrides modified with the F-functional group exhibit the best performance in terms of the adsorption energy and sulfur reduction process. A comparative study with a nonelectride reveals that the anionic electrons (AEs) of electrides aid in anchoring the soluble polysulfides. These results open an avenue for the application of electrides in Li-S batteries.
Collapse
Affiliation(s)
- Siyun Qi
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Chuanchuan Li
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Junru Wang
- Department of Physics, Yantai University, Yantai 264005, China
| | - Xiaohan Song
- Shandong Institute of Advanced Technology, Jinan, 250100, China
| | - Mingwen Zhao
- School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Gang Chen
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
10
|
Rectangular Transition Metal-rTCNQ Organic Frameworks Enabling Polysulfide Anchoring and Fast Electrocatalytic Activity in Li-Sulfur Batteries: A Density Functional Theory Perspective. Molecules 2023; 28:molecules28052389. [PMID: 36903634 PMCID: PMC10005228 DOI: 10.3390/molecules28052389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Two-dimensional metal-organic frameworks (MOFs) have shown great development po-tential in the field of lithium-sulfur (Li-S) batteries. In this theoretical research work, we propose a novel 3d transition metals (TM)-embedded rectangular tetracyanoquinodimethane (TM-rTCNQ) as a potential high-performance sulfur host. The calculated results show that all TM-rTCNQ structures have excellent structural stability and metallic properties. Through exploring different adsorption patterns, we discovered that TM-rTCNQ (TM = V, Cr, Mn, Fe and Co) monolayers possess moderate adsorption strength for all polysulfide species, which is mainly due to the existence of the TM-N4 active center in these frame systems. Especially for the non-synthesized V-rCTNQ, the theoretical calculation fully predicts that the material has the most suitable adsorption strength for polysul-fides, excellent charging-discharging reaction and Li-ion diffusion performance. Additionally, Mn-rTCNQ, which has been synthesized experimentally, is also suitable for further experimental con-firmation. These findings not only provide novel MOFs for promoting the commercialization of Li-S batteries, but also provide unique insights for fully understanding their catalytic reaction mecha-nism.
Collapse
|
11
|
Zhang Y, Guo C, Zhou J, Yao X, Li J, Zhuang H, Chen Y, Chen Y, Li SL, Lan YQ. Anisotropically Hybridized Porous Crystalline Li-S Battery Separators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206616. [PMID: 36440668 DOI: 10.1002/smll.202206616] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Anisotropically hybridized porous crystalline Li-S battery separators based on porous crystalline materials that can meet the multiple functionalities of both anodic and cathodic sides are much desired for Li-S battery yet still challenging in directional design. Here, an anisotropically hybridized separator (CPM) based on an ionic liquid-modified porphyrin-based covalent-organic framework (COF-366-OH-IL) and catalytically active metal-organic framework (Ni3 (HITP)2 ) that can integrate the lithium-polysulfides (LiPSs) adsorption/catalytic conversion and ion-conduction sites together to directionally meet the requirements of electrodes is reported. Remarkably, the-obtained separator exhibits an exceptional high Li+ transference-number (tLi+ = 0.8), ultralow polarization-voltage (<30 mV), high initial specific-capacity (921.38 mAh g-1 at 1 C), and stable cycling-performance, much superior to polypropylene and monolayer-modified separators. Moreover, theoretical calculations confirm the anisotropic effect of CPM on the anodic side (e.g., Li+ transfer, LiPSs adsorption, and anode-protection) and cathodic side (e.g., LiPSs adsorption/catalysis). This work might provide a new perspective for separator exploration.
Collapse
Affiliation(s)
- Yuluan Zhang
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Can Guo
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Jie Zhou
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiaoman Yao
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Jie Li
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Huifen Zhuang
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Yuting Chen
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Yifa Chen
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
12
|
Xia J, Cao R, Zhao L, Wu Q. Structural screening and descriptor exploration of black phosphorus carbide supported bifunctional catalysts for lithium-sulfur batteries. J Colloid Interface Sci 2023; 630:317-327. [DOI: 10.1016/j.jcis.2022.10.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
13
|
Synergistic removal of organic pollutants by Co-doped MIL-53(Al) composite through the integrated adsorption/photocatalysis. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Wu Q, Li T, Song J, Sun X, Ren X, Fu C, Chen L, Tan L, Niu M, Meng X. A Novel Instantaneous Self-Assembled Hollow MOF-Derived Nanodrug for Microwave Thermo-Chemotherapy in Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51656-51668. [PMID: 36355432 DOI: 10.1021/acsami.2c13561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hollow materials derived from metal-organic frameworks (MOFs) have emerged in the biomedical field due to their unique properties, and different synthesis methods have been proposed. However, so far, the large-scale use of hollow MOFs is mostly limited by the timeliness of synthesis methods. Herein, we propose a new ultrasonic aerosol flow strategy for the instantaneous synthesis of a Zr-MOF-derived hollow sphere complex (ZC-HSC) in only one step. Through rapid transient heating, the coordination between metal salts and organic ligands occurs along with prompt evaporation of the solvent. The whole process lasts for only about 21 s, compared with several steps that take hours or even days for conventional synthesis methods. Based on the ZC-HSC, we designed a nanodrug with the functions of manipulating the tumor microenvironment, which can reshape the tumor microenvironment by improving tumor hypoxia and inflammatory microenvironment and promoting antiangiogenic therapy. Combined with microwave thermo-chemotherapy, the nanodrugs effectively treat triple-negative breast cancer (the tumor cell survival rate was only 34.76 and 31.05% in normoxic and hypoxic states, respectively, and the tumor inhibition rate reached 87.9% at the animal level), providing a new theoretical basis for the treatment of triple-negative breast cancer. This rapid, one-step, and continuous ultrasonic aerosol flow strategy has bright prospects in the synthesis of MOF-derived hollow materials and promotes the further development of large-scale applications of biological nanomaterials.
Collapse
Affiliation(s)
- Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Li
- China Rehabilitation Science Institute, Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing 100068, China
| | - Jingjing Song
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohan Sun
- Department of Interventional Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang 110001, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lufeng Chen
- Department of Radiation Oncology, First Clinical Medical School and First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meng Niu
- Department of Interventional Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang 110001, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
15
|
Chong YL, Zhao DD, Wang B, Feng L, Li SJ, Shao LX, Tong X, Du X, Cheng H, Zhuang JL. Metal-Organic Frameworks Functionalized Separators for Lithium-Sulfur Batteries. CHEM REC 2022; 22:e202200142. [PMID: 35833508 DOI: 10.1002/tcr.202200142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Lithium sulfur batteries (LSBs) have attracted tremendous attention owing to their high theoretical specific capacity and specific energy. However, their practical applications are hindered by poor cyclic life, mainly caused by polysulfide shuttling. The development of advanced materials to mitigate the polysulfide shuttling effect is urgently demanded. Metal-organic frameworks (MOFs) have been exploited as multifunctional materials for the decoration of separators owing to their high surface area, structural diversity, tunable pore size, and easy tailor ability. In this review, we aim to present the state-of-the-art MOF-based separators for LSBs. Particular attention is paid to the rational design (pore aperture, metal node, functionality, and dimension) of MOFs with enhanced ability for anchoring polysulfides and facilitating Li+ transportation. Finally, the challenges and perspectives are provided regarding to the future design MOF-based separators for high-performance LSBs.
Collapse
Affiliation(s)
- Yu-Liang Chong
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Dong-Dong Zhao
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Bing Wang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Li Feng
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Si-Jun Li
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Lan-Xing Shao
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Xin Tong
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Xuan Du
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - H Cheng
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Jin-Liang Zhuang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| |
Collapse
|
16
|
Wang YP, Li ZS, Cao XR, Wu SQ, Zhu ZZ. Monolayer MSi 2P 4 (M = V, Nb, and Ta) as Highly Efficient Sulfur Host Materials for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27833-27841. [PMID: 35671171 DOI: 10.1021/acsami.2c04482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the high capacity and low cost of lithium-sulfur (Li-S) batteries, their commercialization is greatly blocked by multiple bottlenecks including the shuttle effect of lithium polysulfides (LiPSs), poor conductivity of sulfur, and sluggish reaction kinetics. Herein, we propose novel two-dimensional MSi2P4 (M = V, Nb, and Ta) monolayers as promising sulfur hosts to improve the Li-S battery performance. Our calculations show that MSi2P4 monolayers offer moderate binding strengths to the polysulfides, which are expected to effectively inhibit the LiPS shuttling and dissolution. Moreover, the conductive properties of the MSi2P4 systems are well maintained after LiPS adsorption, eliminating the insulating nature of sulfur species. Remarkably, MSi2P4 monolayers exhibit superior electrocatalytic activity for the sulfur reduction reaction and the Li2S decomposition reaction, which considerably lowers the energy barriers of LiPS conversions during discharge and charge, thus ensuring the fast redox kinetics and high sulfur utilization of Li-S batteries. This study pioneers the application of MSi2P4 monolayers as highly efficient sulfur host materials for Li-S batteries and affords insights for further development of advanced Li-S batteries.
Collapse
Affiliation(s)
- Y P Wang
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Z S Li
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - X R Cao
- Department of Physics, Xiamen University, Xiamen 361005, China
- Department of Physics, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - S Q Wu
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Z Z Zhu
- Department of Physics, Xiamen University, Xiamen 361005, China
- Department of Physics, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| |
Collapse
|