1
|
Li J, Zhang C, Fang D, Zheng Z, Zhao Y, Tan P, Fang Q, Chen G. The inhibition mechanism of N 2O generation in NH 3-SCR process by water vapor. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136881. [PMID: 39706019 DOI: 10.1016/j.jhazmat.2024.136881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
N₂O is a typical by-product in the NH3-SCR process, which requires urgent resolution due to its negative economic and environmental impacts. This study investigates in detail the mechanism of N2O generation on the surface of the Mn-Ce/TiO2 catalyst (Mn-Ce/TiO2-ZS) with anatase {001} facets preferentially exposed. The deep oxidation of NH3 and *NH2 capture of NO via O2 were proved to be the dominant N2O generation pathways. The production of N2O was remarkably reduced by the introduction of a low percentage of water vapor (H2O). The results revealed that low percentage of H2O was capable of enhancing the acid sites on the catalyst surface and facilitating the generation of active hydroxyl species. These active species inhibited the deep dehydrogenation of ammonia and the disintegration of nitrate species on the catalyst surface, as well as suppressing the generation of N2O.
Collapse
Affiliation(s)
- Junchen Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Cheng Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Dingli Fang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhao Zheng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yan Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peng Tan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingyan Fang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Gang Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Wang Y, Chen L, Wang W, Wang X, Li B, Zhang S, Li W, Li S. Revealing the Excellent Low-Temperature Activity of the Fe 1-xCe xO δ-S Catalyst for NH 3-SCR: Improvement of the Lattice Oxygen Mobility. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17834-17847. [PMID: 37000486 DOI: 10.1021/acsami.3c00212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The development of selective catalytic reduction catalysts by NH3(NH3-SCR) with excellent low-temperature activity and a wide temperature window is highly demanded but is still very challenging for the elimination of NOx emission from vehicle exhaust. Herein, a series of sulfated modified iron-cerium composite oxide Fe1-xCexOδ-S catalysts were synthesized. Among them, the Fe0.79Ce0.21Oδ-S catalyst achieved the highest NOx conversion of more than 80% at temperatures of 175-375 °C under a gas hourly space velocity of 100000 h-1. Sulfation formed a large amount of sulfate on the surface of the catalyst and provided rich Brønsted acid sites, thus enhancing its NH3 adsorption capacity and improving the overall NOx conversion efficiency. The introduction of Ce is the main determining factor in regulating the low-temperature activity of the catalyst by modulating its redox ability. Further investigation found that there is a strong interaction between Fe and Ce, which changed the electron density around the Fe ions in the Fe0.79Ce0.21Oδ-S catalyst. This weakened the strength of the Fe-O bond and improved the lattice oxygen mobility of the catalyst. During the reaction, the iron-cerium composite oxide catalyst showed higher surface lattice oxygen activity and a faster replenishment rate of bulk lattice oxygen. This significantly improved the adsorption and activation of NOx species and the activation of NH3 species on the catalyst surface, thus leading to the superior low-temperature activity of the catalyst.
Collapse
Affiliation(s)
- Yaqing Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Weijia Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoxiang Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Beilei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sujing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Gao C, Wei W, Bai S, Li H. Application of CeTiOx-MOFs catalysts for synergistic removal of toluene and NOx. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
4
|
Recent advances in Pb resistance over SCR catalysts: reaction mechanisms and anti-inactivation measures. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
5
|
Ye B, Jeong B, Lee MJ, Kim TH, Park SS, Jung J, Lee S, Kim HD. Recent trends in vanadium-based SCR catalysts for NOx reduction in industrial applications: stationary sources. NANO CONVERGENCE 2022; 9:51. [PMID: 36401645 PMCID: PMC9675887 DOI: 10.1186/s40580-022-00341-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Vanadium-based catalysts have been used for several decades in ammonia-based selective catalytic reduction (NH3-SCR) processes for reducing NOx emissions from various stationary sources (power plants, chemical plants, incinerators, steel mills, etc.) and mobile sources (large ships, automobiles, etc.). Vanadium-based catalysts containing various vanadium species have a high NOx reduction efficiency at temperatures of 350-400 °C, even if the vanadium species are added in small amounts. However, the strengthening of NOx emission regulations has necessitated the development of catalysts with higher NOx reduction efficiencies. Furthermore, there are several different requirements for the catalysts depending on the target industry and application. In general, the composition of SCR catalyst is determined by the components of the fuel and flue gas for a particular application. It is necessary to optimize the catalyst with regard to the reaction temperature, thermal and chemical durability, shape, and other relevant factors. This review comprehensively analyzes the properties that are required for SCR catalysts in different industries and the development strategies of high-performance and low-temperature vanadium-based catalysts. To analyze the recent research trends, the catalysts employed in power plants, incinerators, as well as cement and steel industries, that emit the highest amount of nitrogen oxides, are presented in detail along with their limitations. The recent developments in catalyst composition, structure, dispersion, and side reaction suppression technology to develop a high-efficiency catalyst are also summarized. As the composition of the vanadium-based catalyst depends mostly on the usage in stationary sources, various promoters and supports that improve the catalyst activity and suppress side reactions, along with the studies on the oxidation state of vanadium, are presented. Furthermore, the research trends related to the nano-dispersion of catalytically active materials using various supports, and controlling the side reactions using the structure of shaped catalysts are summarized. The review concludes with a discussion of the development direction and future prospects for high-efficiency SCR catalysts in different industrial fields.
Collapse
Affiliation(s)
- Bora Ye
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea
| | - Bora Jeong
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea
| | - Myeung-Jin Lee
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea
| | - Tae Hyeong Kim
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Sam-Sik Park
- R&D Center, NANO. Co., Ltd, Sangju, 37257, Republic of Korea
| | - Jaeil Jung
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Seunghyun Lee
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea.
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea.
| | - Hong-Dae Kim
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea.
| |
Collapse
|
6
|
Phosphotungstic Acid-Modified MnOx for Selective Catalytic Reduction of NOx with NH3. Catalysts 2022. [DOI: 10.3390/catal12101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H3PW12O40-modified MnOx catalysts (denoted as Mn-HPW) were used for NOx elimination with co-fed NH3. The optimal Mn-HPW0.02 catalyst exhibited over 90% NOx conversion at 90–270 °C. The incorporation of HPW increased the amount of Lewis acid sites of the catalyst for adsorbing NH3, and accelerated the reaction between the adsorbed NH3 species and gas-phase NOx, thus, increasing the low-temperature catalytic activity. The oxidation ability of the Mn catalyst was decreased due to the addition of HPW, thus, mitigating the overoxidation of the adsorbed NH3 species and improving the de-NOx activity and N2 selectivity in the high-temperature region. DRIFT results revealed that the NH3 species on Lewis and Brønsted acid sites, bridged nitrate, and bidentate nitrate were important species/intermediates for the reaction. NH3-SCR over the Mn and Mn-HPW0.02 catalysts obeyed the Eley–Rideal and Langmuir–Hinshelwood mechanisms, simultaneously, at 120 °C.
Collapse
|
7
|
Structure-activity strategy comparison of (NH4)2CO3 and NH4OH precipitants on MnO catalyst for low-temperature NO abatement. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|