1
|
Yang Y, Sun Z, Wu Y, Liang Z, Li F, Zhu M, Liu J. Porous Organic Framework Materials (MOF, COF, and HOF) as the Multifunctional Separator for Rechargeable Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401457. [PMID: 38733086 DOI: 10.1002/smll.202401457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Indexed: 05/13/2024]
Abstract
The separator is an important component in batteries, with the primary function of separating the positive and negative electrodes and allowing the free passage of ions. Porous organic framework materials have a stable connection structure, large specific surface area, and ordered pores, which are natural places to store electrolytes. And these materials with specific functions can be designed according to the needs of researchers. The performance of porous organic framework-based separators used in rechargeable lithium metal batteries is much better than that of polyethylene/propylene separators. In this paper, the three most classic organic framework materials (MOF, COF, and HOF) are analyzed and summarized. The applications of MOF, COF, and HOF separators in lithium-sulfur batteries, lithium metal anode, and solid electrolytes are reviewed. Meanwhile, the research progress of these three materials in different fields is discussed based on time. Finally, in the conclusion, the problems encountered by MOF, COF, and HOF in different fields as well as their future research priorities are presented. This review will provide theoretical guidance for the design of porous framework materials with specific functions and further stimulate researchers to conduct research on porous framework materials.
Collapse
Affiliation(s)
- Yan Yang
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Zhaoyu Sun
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Yiwen Wu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Ziwei Liang
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Fangkun Li
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Min Zhu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Jun Liu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
2
|
Meng Y, Lin X, Huang J, Zhang L. Recent Advances in Carborane-Based Crystalline Porous Materials. Molecules 2024; 29:3916. [PMID: 39202996 PMCID: PMC11357283 DOI: 10.3390/molecules29163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The field of carborane research has witnessed continuous development, leading to the construction and development of a diverse range of crystalline porous materials for various applications. Moreover, innovative synthetic approaches are expanding in this field. Since the first report of carborane-based crystalline porous materials (CCPMs) in 2007, the synthesis of carborane ligands, particularly through innovative methods, has consistently posed a significant challenge in discovering new structures of CCPMs. This paper provides a comprehensive summary of recent advances in various synthetic approaches for CCPMs, along with their applications in different domains. The primary challenges and future opportunities are expected to stimulate further multidisciplinary development in the field of CCPMs.
Collapse
Affiliation(s)
- Yuxuan Meng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Xi Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Jinyi Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Liangliang Zhang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an 710072, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
3
|
Xu Y, Gong J, Li Q, Guo X, Wan X, Xu L, Pang H. Covalent organic frameworks and their composites for rechargeable batteries. NANOSCALE 2024; 16:11429-11456. [PMID: 38855977 DOI: 10.1039/d4nr01092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Covalent organic frameworks (COFs), characterized by well-ordered pores, large specific surface area, good stability, high precision, and flexible design, are a promising material for batteries and have received extensive attention from researchers in recent years. Compared with inorganic materials, COFs can construct elastic frameworks with better structural stability, and their chemical compositions and structures can be precisely adjusted and functionalized at the molecular level, providing an open pathway for the convenient transfer of ions. In this review, the energy storage mechanism and unique superiority of COFs and COF composites as electrodes, separators and electrolytes for rechargeable batteries are discussed in detail. Special emphasis is placed on the relationship between the establishment of COF structures and their electrochemical performance in different batteries. Finally, this review summarizes the challenges and prospects of COFs and COF composites in battery equipment.
Collapse
Affiliation(s)
- Yuxia Xu
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Jiayue Gong
- School of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| | - Xin Wan
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Lin Xu
- School of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
4
|
Zhang W, Zhang G, Ma J, Xie Z, Gao Z, Yu K, Peng L. The Role of Transition Metal Versus Coordination Mode in Single-Atom Catalyst for Electrocatalytic Sulfur Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38830270 DOI: 10.1021/acsami.4c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Electrocatalytic sulfur reduction reaction (SRR) is emerging as an effective strategy to combat the polysulfide shuttling effect, which remains a critical factor impeding the practical application of the Li-S battery. Single-atom catalyst (SAC), one of the most studied catalytic materials, has shown considerable potential in addressing the polysulfide shuttling effect in a Li-S battery. However, the role played by transition metal vs coordination mode in electrocatalytic SRR is trial-and-error, and the general understanding that guides the synthesis of the specific SAC with desired property remains elusive. Herein, we use first-principles calculations and machine learning to screen a comprehensive data set of graphene-based SACs with different transition metals, heteroatom doping, and coordination modes. The results reveal that the type of transition metal plays the decisive role in SAC for electrocatalytic SRR, rather than the coordination mode. Specifically, the 3d transition metals exhibit admirable electrocatalytic SRR activity for all of the coordination modes. Compared with the reported N3C1 and N4 coordinated graphene-based SACs covering 3d, 4d, and 5d transition metals, the proposed para-MnO2C2 and para-FeN2C2 possess significant advantages on the electrocatalytic SRR, including a considerably low overpotential down to 1 mV and reduced Li2S decomposition energy barrier, both suggesting an accelerated conversion process among the polysulfides. This study may clarify some understanding of the role played by transition metal vs coordination mode for SAC materials with specific structure and desired catalytic properties toward electrocatalytic SRR and beyond.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Gaoshang Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jiabin Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhaotian Xie
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Ziyao Gao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Kuang Yu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Lele Peng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Kang X, He T, Zou R, Niu S, Ma Y, Zhu F, Ran F. Size Effect for Inhibiting Polysulfides Shuttle in Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306503. [PMID: 37821397 DOI: 10.1002/smll.202306503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/17/2023] [Indexed: 10/13/2023]
Abstract
It is undeniable that the dissolution of polysulfides is beneficial in speeding up the conversion rate of sulfur in electrochemical reactions. But it also brings the bothersome "shuttle effect". Therefore, if polysulfides can be retained on the cathode side, the efficient utilization of the polysulfides can be guaranteed to achieve the excellent performance of lithium-sulfur batteries. Based on this idea, considerable methods have been developed to inhibit the shuttling of polysulfides. It is necessary to emphasize that no matter which method is used, the solvation mechanism, and existence forms of polysulfides are essential to analyze. Especially, it is important to clarify the sizes of different forms of polysulfides when using the size effect to inhibit the shuttling of polysulfides. In this review, a comprehensive summary and in-depth discussion of the solvation mechanism, the existing forms of polysulfides, and the influencing factors affecting polysulfides species are presented. Meanwhile, the size of diverse polysulfide species is sorted out for the first time. Depending on the size of polysulfides, tactics of using size effect in cathode, separator, and interlayer parts are elaborated. Finally, a design idea of materials pore size is proposed to satisfy the use of size effect to inhibit polysulfides shuttle.
Collapse
Affiliation(s)
- Xiaoya Kang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Tianqi He
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Rong Zou
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Shengtao Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Yingxia Ma
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Fuliang Zhu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Science and Engineering, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China
| |
Collapse
|
6
|
Sun B, Sun Z, Yang Y, Huang XL, Jun SC, Zhao C, Xue J, Liu S, Liu HK, Dou SX. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries. ACS NANO 2024; 18:28-66. [PMID: 38117556 DOI: 10.1021/acsnano.3c08240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Covalent organic frameworks (COFs) have attracted considerable interest in the field of rechargeable batteries owing to their three-dimensional (3D) varied pore sizes, inerratic porous structures, abundant redox-active sites, and customizable structure-adjustable frameworks. In the context of metal-ion batteries, these materials play a vital role in electrode materials, effectively addressing critical issues such as low ionic conductivity, limited specific capacity, and unstable structural integrity. However, the electrochemical characteristics of the developed COFs still fall short of practical battery requirements due to inherent issues such as low electronic conductivity, the tradeoff between capacity and redox potential, and unfavorable micromorphology. This review provides a comprehensive overview of the recent advancements in the application of COFs, COF-based composites, and their derivatives in rechargeable metal-ion batteries, including lithium-ion, lithium-sulfur, sodium-ion, sodium-sulfur, potassium-ion, zinc-ion, and other multivalent metal-ion batteries. The operational mechanisms of COFs, COF-based composites, and their derivatives in rechargeable batteries are elucidated, along with the strategies implemented to enhance the electrochemical properties and broaden the range of their applications.
Collapse
Affiliation(s)
- Bowen Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Yi Yang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xiang Long Huang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Chongchong Zhao
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, People's Republic of China
| | - Jiaojiao Xue
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Hua Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| | - Shi Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| |
Collapse
|
7
|
Haldar S, Khan AH, De A, Reichmayr F, Morag A, Yu M, Schneemann A, Kaskel S. Fluorinated Benzimidazole-Linked Highly Conjugated Polymer Enabling Covalent Polysulfide Anchoring for Stable Sulfur Batteries. Chemistry 2024; 30:e202302779. [PMID: 37877583 DOI: 10.1002/chem.202302779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Sulfur is one of the most abundant and economical elements in the p-block family and highly redox active, potentially utilizable as a charge-storing electrode with high theoretical capacities. However, its inherent good solubility in many electrolytes inhibits its accessibility as an electrode material in typical metal-sulfur batteries. In this work, the synthetically designed fluorinated porous polymer, when treated with elemental sulfur through a well-known nucleophilic aromatic substitution mechanism (SN Ar), allows for the covalent integration of polysulfides into a highly conjugated benzimidazole polymer by replacing the fluorine atoms. Chemically robust benzimidazole linkages allow such harsh post-synthetic treatment and facilitate the electronic activation of the anchored polysulfides for redox reactions under applied potential. The electrode amalgamated with sulfurized polymer mitigates the so-called polysulfide shuttle effect in the lithium-sulfur (Li-S) battery and also enables a reversible, more environmentally friendly, and more economical aluminum-sulfur (Al-S) battery that is configured with mostly p-block elements as cathode, anode, and electrolytes. The improved cycling stabilities and reduction of the overpotential in both cases pave the way for future sustainable energy storage solutions.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Arafat H Khan
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Fanny Reichmayr
- Chair of Electrochemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ahiud Morag
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Minghao Yu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
- Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, 01277, Dresden, Germany
| |
Collapse
|
8
|
Xu X, Cui Q, Chen H, Huang N. Carborane-Based Three-Dimensional Covalent Organic Frameworks. J Am Chem Soc 2023; 145:24202-24209. [PMID: 37890127 DOI: 10.1021/jacs.3c08541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The predesignable porous structure and high structural flexibility of covalent organic frameworks (COFs) render this material desirable as a platform for addressing various cutting-edge issues. Precise control over their composition, topological structure, porosity, and stability to realize tailor-made functionality still remains a great challenge. In this work, we developed a new kind of three-dimensional (3D) carborane-based COF with a 7-fold interpenetrating dia topological diagram. The resulting COFs exhibited high crystallinity, exceptional porosity, and strong robustness. The slightly lower electronegativity of boron (2.04) than that of hydrogen (2.20) can lead to the polarization of the B-H bond into a Bδ+-Hδ- mode, which renders these COFs as high-performance materials for the adsorption and separation of hexane isomers through the B-Hδ-···Hδ+-C interaction. Significantly, the carborane content of obtained COFs reached up to 54.2 wt %, which gets the highest rank among all the reported porous materials. Combining high surface area, strong robustness, and high content of carborane, the obtained COFs can work as efficient adsorbents for the separation of the five hexane isomers with high separation factors. This work not only enhances the diversity of 3D functional COFs but also constitutes a further step toward the efficient separation of alkane isomers.
Collapse
Affiliation(s)
- Xiaoyi Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qirui Cui
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Dong X, Zhu T, Liu G, Chen J, Li H, Sun J, Gu X, Zhang S. Brominated flame retardants coated separators for high-safety lithium-sulfur batteries. J Colloid Interface Sci 2023; 643:223-231. [PMID: 37060698 DOI: 10.1016/j.jcis.2023.03.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Lithium-sulfur batteries (LSBs) have become highly promising next-generation secondary lithium batteries owing to their high theoretical energy density and abundance of sulfur. Nevertheless, the large-scale application of LSBs is still restricted by the shuttle effect of lithium polysulfide (LiPSs) and the potential fire hazard caused by flammable electrolytes. Herein, three electrolyte-insoluble brominated flame retardants (BFRs) are selected and coated on both sides of commercial polypropylene separators by a facile slurry coating method. The effects of the three BFRs on the safety and electrochemical properties of LSBs are characterized and compared. The coating modification separators greatly improves the flame retardancy of LSBs through radical elimination mechanism. The self-extinguishing time of the electrolyte is reduced from 0.66 s/mg to 0.20 s/mg. Moreover, it is demonstrated that the oxygen (O)-containing BFRs exert a significant adsorption capacity and are more advantageous than O-free BFRs in LSBs. In addition, octabromoether (BDDP) coated separator is more effective in trapping LiPSs than decabromodiphenyl ether (DBDPO) due to higher O content, which can mitigate the shuttle effect and enhance the cycle and rate performance of LSBs. This simple coating strategy for separators with BFRs offers a strongly competitive option for the large-scale production of high-safety LSBs.
Collapse
Affiliation(s)
- Xinxin Dong
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tao Zhu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guoqing Liu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jinxuan Chen
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
10
|
Liu W, Wang K, Zhan X, Liu Z, Yang X, Jin Y, Yu B, Gong L, Wang H, Qi D, Yuan D, Jiang J. Highly Connected Three-Dimensional Covalent Organic Framework with Flu Topology for High-Performance Li-S Batteries. J Am Chem Soc 2023; 145:8141-8149. [PMID: 36989190 DOI: 10.1021/jacs.3c01102] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lithium-sulfur batteries (LSBs) have been considered as a promising candidate for next-generation energy storage devices, which however still suffer from the shuttle effect of the intermediate lithium polysulfides (LiPSs). Covalent-organic frameworks (COFs) have exhibited great potential as sulfur hosts for LSBs to solve such a problem. Herein, a pentiptycene-based D2h symmetrical octatopic polyaldehyde, 6,13-dimethoxy-2,3,9,10,18,19,24,25-octa(4'-formylphenyl)pentiptycene (DMOPTP), was prepared and utilized as a building block toward preparing COFs. Condensation of DMOPTP with 4-connected tetrakis(4-aminophenyl)methane affords an expanded [8 + 4] connected network 3D-flu-COF, with a flu topology. The non-interpenetrated nature of the flu topology endows 3D-flu-COF with a high Brunauer-Emmett-Teller surface area of 2860 m2 g-1, large octahedral cavities, and cross-linked tunnels in the framework, enabling a high loading capacity of sulfur (∼70 wt %), strong LiPS adsorption capability, and facile ion diffusion. Remarkably, when used as a sulfur host for LSBs, 3D-flu-COF delivers a high capacity of 1249 mA h g-1 at 0.2 C (1.0 C = 1675 mA g-1), outstanding rate capability (764 mA h g-1 at 5.0 C), and excellent stability, representing one of the best results among the thus far reported COF-based sulfur host materials for LSBs and being competitive with the state-of-the-art inorganic host materials.
Collapse
Affiliation(s)
- Wenbo Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoning Zhan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhixin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
11
|
Hong H, Guo X, Zhu J, Wu Z, Li Q, Zhi C. Metal/covalent organic frameworks for aqueous rechargeable zinc-ion batteries. Sci China Chem 2023. [DOI: 10.1007/s11426-023-1558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
12
|
Li M, Yu J, Xue Y, Wang K, Wang Q, Xie Z, Wang L, Yang Y, Wu J, Qiu X, Yu H. Preparation of Carborane-Tailored Covalent Organic Frameworks by a Postsynthetic Modification Strategy as a Barrier to Polysulfide in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2922-2932. [PMID: 36600549 DOI: 10.1021/acsami.2c18407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lithium-sulfur batteries (LSBs) have attracted much attention due to their high energy density and theoretical specific capacity. However, the "shuttle effect" of polysulfides limits their application. Herein, we propose a postsynthetic modification (PSM) strategy to synthesize a fibrous carborane-tailored covalent organic framework (PMCB-COF). Benefiting from its amphiphilicity, strong adsorption ability, high specific surface area, and accessible Li+ transport channels, PMCB-COF could serve as a barrier to polysulfide to inhibit the shuttle effect. The cell assembled with PMCB-COF exhibits a high initial capacity of 926 mAh g-1 at 1 C. A Coulombic efficiency of 98% and a fading rate of only 0.039% per cycle are exhibited even after 1500 cycles. So far as we know, PMCB-COF is one of the best materials as a separator of LSBs. This work provides a safe and efficient avenue for tailoring COFs with carborane and might help promote the development of secure, low-cost, and durable rechargeable batteries.
Collapse
Affiliation(s)
- Mingming Li
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Jun Yu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Yali Xue
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Kai Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Qimeng Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zhiying Xie
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Lei Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Yu Yang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| | - Jianping Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Xiaoyan Qiu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Haizhou Yu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University (Nanjing Tech), Nanjing 211816, People's Republic of China
| |
Collapse
|
13
|
Wang Y, Yang X, Li P, Cui F, Wang R, Li X. Covalent Organic Frameworks for Separator Modification of Lithium-Sulfur Batteries. Macromol Rapid Commun 2022:e2200760. [PMID: 36385727 DOI: 10.1002/marc.202200760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Lithium-sulfur (Li-S) batteries are regarded as one of the promising energy storage systems. However, rapid capacity attenuation caused by shuttle effect of soluble polysulfides is major challenge in practical application. The separator modification is regarded as one countermeasure besides the construction of sulfur host materials. Covalent organic frameworks (COFs) are one type of outstanding candidates for suppressing shuttle effect of polysulfides. Herein, recent advances of COFs in the application as commercial separator modifiers are summarized. COFs serve as ionic sieves, the importance of porous size and surface environments in inhibiting soluble polysulfides shuttling and promoting lithium ions conduction is highlighted. The superiority of charge-neutral COFs, ionic COFs, and the composites of COFs with conductive materials for improving reversible capacity and cycling stability is demonstrated. Some new strategies for the design of COF-based separator modifiers are proposed to achieving high energy density. The review provides new perspectives for future development of high-performance Li-S batteries.
Collapse
Affiliation(s)
- Yaxin Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xuemiao Yang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Pengyue Li
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China.,Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Fangling Cui
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Ruihu Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xiaoju Li
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China.,Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| |
Collapse
|
14
|
Wang Z, Pan F, Zhao Q, Lv M, Zhang B. The application of covalent organic frameworks in Lithium-Sulfur batteries: A mini review for current research progress. Front Chem 2022; 10:1055649. [DOI: 10.3389/fchem.2022.1055649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, how to enhance the energy density of rechargeable batteries dramatically is becoming a driving force in the field of energy storage research. Among the current energy storage technologies, the lithium-sulfur (Li-S) batteries are one of the most promising candidates for achieving high-capacity and commercial batteries. The theoretical energy density of Li-S batteries reaches to 2,600 Wh kg−1 with the theoretical capacity of 1,675 mA h g−1. Therefore, Li-S batteries are considered as the great potential for developing future energy storage technology. However, some of problems such as Li dendrites growth, the shuttle effect of sulfides and the electronic insulation feature of sulfur, have brought obstacles to the development of Li-S batteries. The covalent organic frameworks (COFs) are a series of porous materials with different topological structures, which show the versatile characteristics of high specific surface area, permanent pores, ordered porous channels and tunable internal structure. Potentially, their ordered channels and extended conjugated frameworks could facilitate rapid Li-ion diffusion and electron transport for the remarkable rate capability. On the basis of these merits, the COFs become the potential electrode materials to solve the above serious problems of Li-S batteries. In this mini review, we summarize the research progress of COFs utilized as electrode materials in the Li-S batteries, including the cathode, separator and anode materials. Accordingly, the outlook of COFs as electrodes for future development in Li-S batteries is also given.
Collapse
|
15
|
Zhu T, Chen D, Liu G, Qi P, Gu X, Li H, Sun J, Zhang S. A Facile Immobilization Strategy for Soluble Phosphazene to Actualize Stable and Safe Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203693. [PMID: 36007148 DOI: 10.1002/smll.202203693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Lithium-sulfur batteries (LSBs) have attracted extensive attention owing to their high energy density and abundant sulfur resources. However, LSBs are still restricted by the unsatisfactory electrochemical performance resulting from the shuttle effect of lithium polysulfide (LiPSs), and the potential fire hazard caused by inflammable ether electrolytes and polyolefin separators. Herein, a facile immobilization strategy for hexachlorocyclotriphosphazene (HCCP) is creatively applied to address the above issues simultaneously. Insoluble HCCP cross-linked microspheres (H-CMP) are firstly obtained at ambient temperature using tannic acid (TA) as a cross-linking agent and then a multifunctional separator coating is constructed based on H-CMP. The released phosphorus-related radicals from H-CMP in wide temperatures effectively prevent the combustion of electrolytes and separators, and hence improve the fire safety of the Li-S pouch cell. Furthermore, H-CMP availably chemisorbs LiPSs to interdict the shuttle effect, thereby dramatically improving the electrochemical performance of LSBs. The effectiveness of this strategy is also verified in high sulfur loading (6.38 mg cm-2 ), high temperature (50 °C), and Li-S pouch cells. More importantly, H-CMP exhibits sufficient stability for Li metal and suppression of Li dendrites. This facile immobilization strategy for multifunctional phosphazenes provides a competitive option for the large-scale fabrication of high-safety and high-performance LSBs.
Collapse
Affiliation(s)
- Tao Zhu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongli Chen
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guoqing Liu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peng Qi
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
16
|
He G, Li M, Li X, Wang Q, Xie Z, Xue Y, Wang K, Yu J, Sun G, Yu H, Qiu X. Isoporous membrane from PS-b-PAA/MWCNT-Ag composite with high photothermal conversion efficiency. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Haldar S, Wang M, Bhauriyal P, Hazra A, Khan AH, Bon V, Isaacs MA, De A, Shupletsov L, Boenke T, Grothe J, Heine T, Brunner E, Feng X, Dong R, Schneemann A, Kaskel S. Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium-Sulfur Battery Cathodes. J Am Chem Soc 2022; 144:9101-9112. [PMID: 35543441 DOI: 10.1021/jacs.2c02346] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dithiine linkage formation via a dynamic and self-correcting nucleophilic aromatic substitution reaction enables the de novo synthesis of a porous thianthrene-based two-dimensional covalent organic framework (COF). For the first time, this organo-sulfur moiety is integrated as a structural building block into a crystalline layered COF. The structure of the new material deviates from the typical planar interlayer π-stacking of the COF to form undulated layers caused by bending along the C-S-C bridge, without loss of aromaticity and crystallinity of the overall COF structure. Comprehensive experimental and theoretical investigations of the COF and a model compound, featuring the thianthrene moiety, suggest partial delocalization of sulfur lone pair electrons over the aromatic backbone of the COF decreasing the band gap and promoting redox activity. Postsynthetic sulfurization allows for direct covalent attachment of polysulfides to the carbon backbone of the framework to afford a molecular-designed cathode material for lithium-sulfur (Li-S) batteries with a minimized polysulfide shuttle. The fabricated coin cell delivers nearly 77% of the initial capacity even after 500 charge-discharge cycles at 500 mA/g current density. This novel sulfur linkage in COF chemistry is an ideal structural motif for designing model materials for studying advanced electrode materials for Li-S batteries on a molecular level.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Preeti Bhauriyal
- Chair of Theoretical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Arpan Hazra
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Arafat H Khan
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Mark A Isaacs
- Department of Chemistry, University College London, London WC1H 0AJ, U.K.,HarwellXPS, Rutherford Appleton Laboratories, Research Complex at Harwell, Didcot OX11 0FA, U.K
| | - Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Leonid Shupletsov
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Tom Boenke
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany.,Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, Dresden 01277, Germany
| | - Julia Grothe
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Thomas Heine
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Leipzig Research Branch, Permoser Str. 15, 04316 Leipzig, Germany.,Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Korea
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany.,Max Planck Institute of Microstructure Physics, Halle (Saale) 06120, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany.,Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany.,Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, Dresden 01277, Germany
| |
Collapse
|