1
|
Shi P, Yao Y, Zhu Y, Yu X, Liu D, Yan C, Chen G. Atomistically informed hierarchical modeling for revisiting the constituent structures from heredity and nano-micro mechanics of sheath-core carbon fiber. Phys Chem Chem Phys 2024; 26:903-921. [PMID: 38088020 DOI: 10.1039/d3cp03114d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
To better understand the heterogeneous anisotropic nanocomposite features and provide reliable underlying constitutive parameters of carbon fiber for continuum-level simulations, hierarchical modeling approaches combining quantum chemistry, molecular dynamics, numerical and analytical micromechanics are employed for studying the structure-performance relationships of the precursor-inherited sheath-core carbon fiber layers. A robust debonding force field is derived from energy matching protocols, including bond dissociation enthalpy calculations and rigid-constraint potential energy surface scan. Logistic long range bond stretching curves with exponential parameters and shifted force vdW curves are designed to diminish energy perturbations. The pseudo-crystalline microstructure is proposed and validated using virtual wide angle X-ray diffraction patterns and bond-orientational order parameters. The distribution or alignment features of the nanocomposite microstructures are collected from quantum chemical topology analysis and normal vector extractions. Non-equilibrium tensile loading simulation predicts the decomposed strain energy contributions, principal-axis modulus, strength limit, localized stress, and fracture morphologies of the model. Finally, an atomistically-informed stiffness prediction model combining numerical homogenization and analytical self-consistent Eshelby-Mori-Tanaka-type effective mean field micromechanics theory is proposed, giving a successful estimation of the overall stiffness matrix of the sheath-core carbon fiber system. The hierarchical models in combination with the carbonization reaction template will help in providing efficient and feasible schemes for the synergistic process-performance control of distinct types of carbon fiber.
Collapse
Affiliation(s)
- Pengcheng Shi
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youqiang Yao
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Yingdan Zhu
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochen Yu
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Dong Liu
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Chun Yan
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Gang Chen
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|