1
|
Ding M, Yang X, Liu Y, Zeng S, Duan G, Huang Y, Liang Z, Zhang P, Ji J, Jiang S. A review of advanced helical fibers: formation mechanism, preparation, properties, and applications. MATERIALS HORIZONS 2024; 11:5843-5873. [PMID: 39221699 DOI: 10.1039/d4mh00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As a unique structural form, helical structures have a wide range of application prospects. In the field of biology, helical structures are essential for the function of biological macromolecules such as proteins, so the study of helical structures can help to deeply understand life phenomena and develop new biotechnology. In materials science, helical structures can give rise to special physical and chemical properties, such as in the case of spiral nanotubes, helical fibers, etc., which are expected to be used in energy, environment, medical and other fields. The helical structure also has unique charm and application value in the fields of aesthetics and architecture. In addition, helical fibers have attracted a lot of attention because of their tendrils' vascular geometry and indispensable structural properties. In this paper, the development of helical fibers is briefly reviewed from the aspects of mechanism, synthesis process and application. Due to their good chemical and physical properties, helical fibers have a good application prospect in many fields. Potential problems and future opportunities for helical fibers are also presented for future studies.
Collapse
Affiliation(s)
- Minmin Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiuling Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Shiyi Zeng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, Zhejiang, China.
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Chen Y, Guo Y, Xie B, Jin F, Ma L, Zhang H, Li Y, Chen X, Hou M, Gao J, Liu H, Lu YJ, Wong CP, Zhao N. Lightweight and drift-free magnetically actuated millirobots via asymmetric laser-induced graphene. Nat Commun 2024; 15:4334. [PMID: 38773174 PMCID: PMC11109242 DOI: 10.1038/s41467-024-48751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Millirobots must have low cost, efficient locomotion, and the ability to track target trajectories precisely if they are to be widely deployed. With current materials and fabrication methods, achieving all of these features in one millirobot remains difficult. We develop a series of graphene-based helical millirobots by introducing asymmetric light pattern distortion to a laser-induced polymer-to-graphene conversion process; this distortion resulted in the spontaneous twisting and peeling off of graphene sheets from the polymer substrate. The lightweight nature of graphene in combine with the laser-induced porous microstructure provides a millirobot scaffold with a low density and high surface hydrophobicity. Magnetically driven nickel-coated graphene-based helical millirobots with rapid locomotion, excellent trajectory tracking, and precise drug delivery ability were fabricated from the scaffold. Importantly, such high-performance millirobots are fabricated at a speed of 77 scaffolds per second, demonstrating their potential in high-throughput and large-scale production. By using drug delivery for gastric cancer treatment as an example, we demonstrate the advantages of the graphene-based helical millirobots in terms of their long-distance locomotion and drug transport in a physiological environment. This study demonstrates the potential of the graphene-based helical millirobots to meet performance, versatility, scalability, and cost-effectiveness requirements simultaneously.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yuanhui Guo
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Bin Xie
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Fujun Jin
- Institute of Natural Medicine and Green Chemistry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Li Ma
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Hao Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yihao Li
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xin Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Maoxiang Hou
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jian Gao
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Huilong Liu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yu-Jing Lu
- Institute of Natural Medicine and Green Chemistry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
3
|
Abstract
Owing to superior softness, wetness, responsiveness, and biocompatibility, bulk hydrogels are being intensively investigated for versatile functions in devices and machines including sensors, actuators, optics, and coatings. The one-dimensional (1D) hydrogel fibers possess the metrics from both the hydrogel materials and structural topology, endowing them with extraordinary mechanical, sensing, breathable and weavable properties. As no comprehensive review has been reported for this nascent field, this article aims to provide an overview of hydrogel fibers for soft electronics and actuators. We first introduce the basic properties and measurement methods of hydrogel fibers, including mechanical, electrical, adhesive, and biocompatible properties. Then, typical manufacturing methods for 1D hydrogel fibers and fibrous films are discussed. Next, the recent progress of wearable sensors (e.g., strain, temperature, pH, and humidity) and actuators made from hydrogel fibers is discussed. We conclude with future perspectives on next-generation hydrogel fibers and the remaining challenges. The development of hydrogel fibers will not only provide an unparalleled one-dimensional characteristic, but also translate fundamental understanding of hydrogels into new application boundaries.
Collapse
Affiliation(s)
- Jiaxuan Du
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qing Ma
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Litao Sun
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
4
|
Ma W, Ling S, Liu Y, Chen Z, Xu J. Bio-Inspired Low-Cost Fabrication of Stretchable, Adhesive, Transparent, and Multi-Functionalized Joint Wound Dressings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22915-22928. [PMID: 37155948 DOI: 10.1021/acsami.3c02065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ideal joint wound dressings should not only promote wound healing and have good mechanical properties including stretchability and adhesion but also possess functions such as sterilization or motion monitoring. The multiple characteristic requirements have greatly limited the material's alternative, resulting in research on functional joint wound dressings falling far short of market demand. Therefore, low-cost, comprehensive designs need to be developed. Herein, inspired by the spiral arteries in the endometrium, alginate-based helical fibers were introduced into polyacrylamide/gelatin (PAM-Gel) to obtain composite polymer membranes, realizing a combination of both mechanical and functional properties. Large scale (100 m) and high-throughput (10 times higher than literature) fabrication of helical microfibers were first achieved, ensuring the low cost of fiber preparation. The composite film had adequate stretchability (>300% strain), adhesion strength (14 kPa), high transparency, and good biocompatibility. The helical fibers could be easily functionalized without affecting the mechanical properties of the dressings, thus broadening the range of materials available for joint dressings. After different treatments of the helical fibers, controlled drug release and joint motion monitoring were realized. Therefore, this helical microfiber composite membrane design achieved low-cost preparation, good mechanical properties, and functionalities including healing promotion, drug release, and motion monitoring ability, demonstrating application potential.
Collapse
Affiliation(s)
- Wenjun Ma
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Sida Ling
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yingzhe Liu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jianhong Xu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J. Conductive fibers for biomedical applications. Bioact Mater 2023; 22:343-364. [PMID: 36311045 PMCID: PMC9588989 DOI: 10.1016/j.bioactmat.2022.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Bioelectricity has been stated as a key factor in regulating cell activity and tissue function in electroactive tissues. Thus, various biomedical electronic constructs have been developed to interfere with cell behaviors to promote tissue regeneration, or to interface with cells or tissue/organ surfaces to acquire physiological status via electrical signals. Benefiting from the outstanding advantages of flexibility, structural diversity, customizable mechanical properties, and tunable distribution of conductive components, conductive fibers are able to avoid the damage-inducing mechanical mismatch between the construct and the biological environment, in return to ensure stable functioning of such constructs during physiological deformation. Herein, this review starts by presenting current fabrication technologies of conductive fibers including wet spinning, microfluidic spinning, electrospinning and 3D printing as well as surface modification on fibers and fiber assemblies. To provide an update on the biomedical applications of conductive fibers and fiber assemblies, we further elaborate conductive fibrous constructs utilized in tissue engineering and regeneration, implantable healthcare bioelectronics, and wearable healthcare bioelectronics. To conclude, current challenges and future perspectives of biomedical electronic constructs built by conductive fibers are discussed.
Collapse
Affiliation(s)
- Leqian Wei
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Shasha Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Mengqi Shan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yimeng Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yongliang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao City, Shandong Province, 266071, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
6
|
Wang Q, Wang C, Yang X, Wang J, Zhang Z, Shang L. Microfluidic preparation of optical sensors for biomedical applications. SMART MEDICINE 2023; 2:e20220027. [PMID: 39188556 PMCID: PMC11235902 DOI: 10.1002/smmd.20220027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 08/28/2024]
Abstract
Optical biosensors are platforms that translate biological information into detectable optical signals, and have extensive applications in various fields due to their characteristics of high sensitivity, high specificity, dynamic sensing, etc. The development of optical sensing materials is an important part of optical sensors. In this review, we emphasize the role of microfluidic technology in the preparation of optical sensing materials and the application of the derived optical sensors in the biomedical field. We first present some common optical sensing mechanisms and the functional responsive materials involved. Then, we describe the preparation of these sensing materials by microfluidics. Afterward, we enumerate the biomedical applications of these optical materials as biosensors in disease diagnosis, drug evaluation, and organ-on-a-chip. Finally, we discuss the challenges and prospects in this field.
Collapse
Affiliation(s)
- Qiao Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xinyuan Yang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jiali Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Continuous-flow synthesis of amphiphilic rhodamine B-polymethylsilsesquioxane fluorescent microspheres for micro-PIV analysis. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Ma W, Ling S, Zhang J, Chen Z, Xu J. Microfluidic fabrication of calcium alginate helical microfibers for highly stretchable wound dressing. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wenjun Ma
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China
| | - Sida Ling
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China
| | - Jingwei Zhang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China
| |
Collapse
|