1
|
Jia H, Li X, Chen K, Yang F, Ren H, Li H, Li C. Enhancing Directional Droplet Transport via Surface Charge Gradient: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39258984 DOI: 10.1021/acs.langmuir.4c02642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The phenomenon of spontaneous droplet transport has a wide range of implications in water collection, microfluidic manipulation, oil-water separation, and various other fields. Achieving efficient and controllable spontaneous droplet transport is therefore of paramount importance. This study investigates the potential of surface charge manipulation to enhance spontaneous droplet transport through comprehensive molecular dynamics simulations. Our findings reveal that the surface charge of the substrate significantly influences its wettability, reducing the contact angle of the droplet and increasing both the contact area and interaction energy. Moreover, we introduce a novel approach to enhance droplet mobility by creating a surface charge gradient on the substrate. By introducing bands with varying charges along a specific direction of the substrate, the droplet experiences a force directed toward regions of increasing charge, thereby facilitating its movement. Importantly, the driving mechanism of droplet motion is well explained by combining classical electrowetting theory with the analysis of the droplet's advancing and receding contact angles, which demonstrates that a more pronounced surface charge gradient generates greater force and enhances droplet mobility. These findings offer valuable insights into the design of microfluidic systems and related applications based on electrowetting.
Collapse
Affiliation(s)
- Huiru Jia
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuhao Li
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kang Chen
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fan Yang
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Hongru Ren
- School of Science, Chang'an University, Xi'an 710064, China
| | - Huan Li
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
- Innovation Center, NPU Chongqing, Chongqing 401135, China
| | - Chun Li
- Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
2
|
Huang Y, Wen G, Fan Y, He M, Sun W, Tian X, Huang S. Magnetic-Actuated Jumping of Droplets on Superhydrophobic Grooved Surfaces: A Versatile Strategy for Three-Dimensional Droplet Transportation. ACS NANO 2024; 18:6359-6372. [PMID: 38363638 DOI: 10.1021/acsnano.3c11197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
On-demand droplet transportation is of great significance for numerous applications. Although various strategies have been developed for droplet transportation, out-of-surface three-dimensional (3D) transportation of droplets remains challenging. Here, a versatile droplet transportation strategy based on magnetic-actuated jumping (MAJ) of droplets on superhydrophobic grooved surfaces (SHGSs) is presented, which enables 3D, remote, and precise manipulation of droplets even in enclosed narrow spaces. To trigger MAJ, an electromagnetic field is utilized to deform the droplet on the SHGS with the aid of an attached magnetic particle, thereby the droplet acquires excess surface energy. When the electromagnetic field is quickly removed, the excess surface energy is partly converted into kinetic energy, allowing the droplet to jump atop the surface. Through high-speed imaging and numerical simulation, the working mechanism and size matching effect of MAJ are unveiled. It is found that the MAJ behavior can only be observed if the sizes of the droplets and the superhydrophobic grooves are matched, otherwise unwanted entrapment or pinch-off effects would lead to failure of MAJ. A regime diagram which serves as a guideline to design SHGSs for MAJ is proposed. The droplet transportation capacities of MAJ, including in-surface and out-of-surface directional transportation, climbing stairs, and crossing obstacles, are also demonstrated. With the ability to remotely manipulate droplets in enclosed narrow spaces without using any mechanical moving parts, MAJ can be used to design miniaturized fluidic platforms, which exhibit great potential for applications in bioassays, microfluidics, droplet-based switches, and microreactions.
Collapse
Affiliation(s)
- Yusheng Huang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Guifeng Wen
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Yue Fan
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuelin Tian
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Shilin Huang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Liu R, Cao L, Liu D, Wang L, Saeed S, Wang Z. Laser Interference Lithography-A Method for the Fabrication of Controlled Periodic Structures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1818. [PMID: 37368248 DOI: 10.3390/nano13121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
A microstructure determines macro functionality. A controlled periodic structure gives the surface specific functions such as controlled structural color, wettability, anti-icing/frosting, friction reduction, and hardness enhancement. Currently, there are a variety of controllable periodic structures that can be produced. Laser interference lithography (LIL) is a technique that allows for the simple, flexible, and rapid fabrication of high-resolution periodic structures over large areas without the use of masks. Different interference conditions can produce a wide range of light fields. When an LIL system is used to expose the substrate, a variety of periodic textured structures, such as periodic nanoparticles, dot arrays, hole arrays, and stripes, can be produced. The LIL technique can be used not only on flat substrates, but also on curved or partially curved substrates, taking advantage of the large depth of focus. This paper reviews the principles of LIL and discusses how the parameters, such as spatial angle, angle of incidence, wavelength, and polarization state, affect the interference light field. Applications of LIL for functional surface fabrication, such as anti-reflection, controlled structural color, surface-enhanced Raman scattering (SERS), friction reduction, superhydrophobicity, and biocellular modulation, are also presented. Finally, we present some of the challenges and problems in LIL and its applications.
Collapse
Affiliation(s)
- Ri Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Liang Cao
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Dongdong Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Lu Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Sadaf Saeed
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK
| |
Collapse
|
4
|
Wang F, Guo F, Wang Z, He H, Sun Y, Liang W, Yang B. Surface Charge Density Gradient Printing To Drive Droplet Transport: A Numerical Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13697-13706. [PMID: 36317786 DOI: 10.1021/acs.langmuir.2c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Traditional strategies, such as morphological or chemical gradients, struggle to realize the high-velocity and long-distance transport for droplets on a solid surface because of the pinning hydrodynamic equilibrium. Thus, there is a continuing challenge for practical technology to drive droplet transport over the last decades. The surface charge density (SCD) gradient printing method overcame the theoretical limit of traditional strategies and tackled this challenge [Nat. Mater. 2019, 18: 936], which utilized the asymmetric electric force to realize the high-velocity and long-distance droplet transport along a preprinted SCD gradient pathway. In the present work, by coupling the electrostatics and the hydrodynamics, we developed an unexplored numerical model for the water droplet transporting along the charged superhydrophobic surface. Subsequently, the effects of SCD gradients on the droplet transport were systematically discussed, and an optimized method for SCD gradient printing was proposed according to the numerical results. The present approach can provide early guidance for the SCD gradient printing to drive droplet transport on a solid surface.
Collapse
Affiliation(s)
- Fangxin Wang
- College of Architectural Science and Engineering, Yangzhou University, Yangzhou225127, P.R. China
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin150001, P.R. China
| | - Fuzheng Guo
- College of Architectural Science and Engineering, Yangzhou University, Yangzhou225127, P.R. China
| | - Zhenqing Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin150001, P.R. China
| | - Hailing He
- Department of Chemical Engineering, Tsinghua University, Beijing100084, P.R. China
| | - Yun Sun
- College of Architectural Science and Engineering, Yangzhou University, Yangzhou225127, P.R. China
| | - Wenyan Liang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin150001, P.R. China
| | - Bin Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai200092, P.R. China
| |
Collapse
|