1
|
Du B, Ma J, Xiang H, Wang Y, Li B. Recent progress of buried interface in high-efficiency and stable perovskite solar cells. Chem Commun (Camb) 2024; 60:13819-13831. [PMID: 39533968 DOI: 10.1039/d4cc04884a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Perovskite solar cells (PSCs) have been rapidly developed in recent years due to their excellent photovoltaic performance, which has been actively promoted by many researchers. However, interfacial non-radiative compounding hinders further improvement of their device performance. Buried interface modification strategies can minimize the non-radiative compounding within the interface, resulting in highly efficient and stable PSCs. In this review, we summarize the recent advances in the development of multiple classes of materials applied to buried interface engineering for the preparation of highly efficient and stable PSCs, including the development of organic, inorganic, and polymeric materials. The important role of buried interfaces in regulating energy alignment, passivating surface defects, modulating morphology, etc. have been discussed. Furthermore, we propose strategies to reduce nonradiative composites at interfaces. Finally, potential developments and challenges of buried interfaces for high performance stabilized PSCs are presented.
Collapse
Affiliation(s)
- Bin Du
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China.
| | - Jintao Ma
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China.
| | - Hongkun Xiang
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China.
| | - Yanlong Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bixin Li
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China.
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| |
Collapse
|
2
|
Wang W, Yang K, Zhu Q, Zhang T, Guo L, Hu F, Zhong R, Wen X, Wang H, Qi J. MOFs-Based Materials with Confined Space: Opportunities and Challenges for Energy and Catalytic Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311449. [PMID: 38738782 DOI: 10.1002/smll.202311449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Metal-Organic Frameworks (MOFs) are a very promising material in the fields of energy and catalysis due to their rich active sites, tunable pore size, structural adaptability, and high specific surface area. The concepts of "carbon peak" and "carbon neutrality" have opened up huge development opportunities in the fields of energy storage, energy conversion, and catalysis, and have made significant progress and breakthroughs. In recent years, people have shown great interest in the development of MOFs materials and their applications in the above research fields. This review introduces the design strategies and latest progress of MOFs are included based on their structures such as core-shell, yolk-shell, multi-shelled, sandwich structures, unique crystal surface exposures, and MOF-derived nanomaterials in detail. This work comprehensively and systematically reviews the applications of MOF-based materials in energy and catalysis and reviews the research progress of MOF materials for atmospheric water harvesting, seawater uranium extraction, and triboelectric nanogenerators. Finally, this review looks forward to the challenges and opportunities of controlling the synthesis of MOFs through low-cost, improved conductivity, high-temperature heat resistance, and integration with machine learning. This review provides useful references for promoting the application of MOFs-based materials in the aforementioned fields.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ke Yang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Qinghan Zhu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Tingting Zhang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Feiyang Hu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ruixia Zhong
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Xiaojing Wen
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Gu WM, Jiang KJ, Jiao X, Gao CY, Fan XH, Yang LM, Song Y. In-Situ Cyclized Polyacrylonitrile as an Electron Selective Layer for n-i-p Perovskite Solar Cell with Enhanced Efficiency and Stability. Angew Chem Int Ed Engl 2024; 63:e202403264. [PMID: 38659076 DOI: 10.1002/anie.202403264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
In situ cyclized polyacrylonitrile (CPAN) is developed to replace n-type metal oxide semiconductors (TiO2 or SnO2) as an electron selective layer (ESL) for highly efficient and stable n-i-p perovskite solar cells (PSCs). The CPAN layer is fabricated via facile in situ cyclization reaction of polyacrylonitrile (PAN) coated on a conducting glass substrate. The CPAN layer is robust and insoluble in common solvents, and possesses n-type semiconductor properties with a high electron mobility of 4.13×10-3 cm2 V-1 s-1. With the CPAN as an ESL, the PSC affords a power conversion efficiency (PCE) of 23.12 %, which is the highest for the n-i-p PSCs with organic ESLs. Moreover, the device with the CPAN layer holds superior operational stability, maintaining over 90 % of their initial efficiency after 500 h continuous light soaking. These results confirm that the CPAN layer would be a desirable low-cost and efficient ESL for n-i-p PSCs and other photoelectronic devices with high performance and stability.
Collapse
Affiliation(s)
- Wei-Min Gu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, 056038, Handan, China
| | - Ke-Jian Jiang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Xinning Jiao
- China School of Chemical & Environmental Engineering, China University of Mining & Technology, 100083, Beijing, P. R. China
| | - Cai-Yan Gao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Xin-Heng Fan
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Lian-Ming Yang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| |
Collapse
|
4
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Wu D, Zhou H, Lai X, Liu X, Sang K, Chen Y, Chen M, Wei J, Wu S, Pang Q, Zhou L, Chen P. Eu-Based Porphyrin MOF Enables High-Performance Carbon-Based Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308783. [PMID: 38105423 DOI: 10.1002/smll.202308783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/19/2023] [Indexed: 12/19/2023]
Abstract
The low power conversion efficiency (PCE) of hole transport materials (HTM) - free carbon-based perovskite solar cells (C-PSCs) poses a challenge. Here, a novel 2D Eu-TCPP MOF (TCPP; [tetrakis (4-carboxyphenyl) porphyrin]) sandwiched between the perovskite layer and the carbon electrode is used to realize an effective and stable HTM-free C-PSCs. Relying on the synergistic effect of both the metal-free TCPP ligand with a unique absorption spectrum and hydrophobicity and the EuO4(OH)2 chain in the Eu-TCPP MOF, defects are remarkably suppressed and light-harvesting capability is significantly boosted. Energy band alignment is achieved after Eu-TCPP MOF treatment, promoting hole collection. Förster resonance energy transfer results in improved light utilization and protects the perovskite from decomposition. As a result, the HTM-free C-PSCs with Eu-TCPP MOF reach a champion PCE of 18.13%. In addition, the unencapsulated device demonstrates outstanding thermal stability and UV resistance and keeps 80.6% of its initial PCE after 5500 h in a high-humidity environment (65%-85% RH).
Collapse
Affiliation(s)
- Dongqi Wu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Huanyi Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Xiaoxia Lai
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Xinxin Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Kaihang Sang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Yan Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Mianhong Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Jianwu Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Shan Wu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Qi Pang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Peican Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| |
Collapse
|
6
|
Zhang J, Hu L, Cao W, Dong Y, Xia D, Lin K, Yang Y. Multilateral Passivation Strategy in Post-Synthetic Flexible Metal-Organic Frameworks for Enhancing Perovskite Solar Cells. Inorg Chem 2023. [PMID: 37437255 DOI: 10.1021/acs.inorgchem.3c01618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The photovoltaic performance of perovskite solar cells is severely limited by the innate defects of perovskite films. Metal-organic framework (MOF)-based additives with luxuriant skeleton structures and tailored functional groups show a huge potential to solve these problems. Here, a multilateral passivation strategy is performed by introducing two alkyl-sulfonic acid functionalized MOFs, MIL-88B-1,3-SO3H and MIL-88B-1,4-SO3H, respectively, obtained from MIL-88B-NH2 through a post-synthetic process, for coordinating the lead defects and inhibiting non-radiative recombination. The flexible MIL-88B-type frameworks endow both functionalized MOFs with excellent electrical conductivity and preferable carrier transport in the hole-transport materials. Compared with the original MIL-88B-NH2 and MIL-88B-1,4-SO3H, MIL-88B-1,3-SO3H exhibits optimal steric hindrance and multiple passivation groups (-NH2, -NH-, and -SO3H), achieving the champion doped device with an enhanced power conversion efficiency (PCE) of 22.44% and excellent stability, which maintains 92.8% of the original PCE under ambient conditions (40% humidity and 25 °C) for 1200 h.
Collapse
Affiliation(s)
- Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Liping Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Wei Cao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yayu Dong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Kaifeng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
7
|
Ye Y, Yin Y, Chen Y, Li S, Li L, Yamauchi Y. Metal-Organic Framework Materials in Perovskite Solar Cells: Recent Advancements and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208119. [PMID: 36932872 DOI: 10.1002/smll.202208119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Organic-inorganic hybrid perovskite solar cells (PSCs) are among the most promising candidates for the next generation of photovoltaic devices because of the significant increase in their power conversion efficiency (PCE) from less than 10% to 25.7% in past decade. The metal-organic framework (MOF) materials owing to their unique properties, such as large specific surface area, abundant binding sites, adjustable nanostructures, and synergistic effects, are used as additives or functional layers to enhance the device performance and long-term stability of PSCs. This review focuses on the recent advancements in the applications of MOFs as/in different functional layers of PSCs. The photovoltaic performance, impact, and advantages of MOF materials integrated into the perovskite absorber, electron transport layer, hole transport layer, and interfacial layer are reviewed. In addition, the applicability of MOFs to mitigate leakage of Pb2+ from halide perovskites and corresponding devices is discussed. This review concludes with the perspectives on further research directions for employing MOFs in PSCs.
Collapse
Affiliation(s)
- Yuxuan Ye
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Yongqi Yin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Yan Chen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Shuang Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Lin Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|