1
|
Han Y, Mao L, Zhang QW, Tian Y. Sub-100 ms Level Ultrafast Detection and Near-Infrared Ratiometric Fluorescence Imaging of Norepinephrine in Live Neurons and Brains. J Am Chem Soc 2023; 145:23832-23841. [PMID: 37850961 DOI: 10.1021/jacs.3c09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Norepinephrine (NE) is a key neurotransmitter in the central and sympathetic nervous systems, whose content fluctuates dynamically and rapidly in various brain regions during different physiological and pathophysiological processes. However, it remains a great challenge to directly visualize and precisely quantify the transient NE dynamics in living systems with high accuracy, specificity, sensitivity, and, in particular, high temporal resolution. Herein, we developed a series of small-molecular probes that can specifically detect NE through a sequential nucleophilic substitution-cyclization reaction, accompanied by a ratiometric near-infrared fluorescence response, within an impressively short time down to 60 ms, which is 3 orders of magnitude faster than that of present small-molecular probes. A unique water-promoted intermolecular proton transfer mechanism is disclosed, which dramatically boosted the recognition kinetics by ∼680 times. Benefiting from these excellent features, we quantitatively imaged the transient endogenous NE dynamics under external stimuli at the single living neuron level and further revealed the close correlations between NE fluctuations and Parkinson's disease pathology at the level of acute brain slices and live mouse brains in vivo.
Collapse
Affiliation(s)
- Yujie Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Leiwen Mao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Qi-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
2
|
Sun D, Wu Y, Han X, Liu S. The host-guest inclusion driven by host-stabilized charge transfer for construction of sequentially red-shifted mechanochromic system. Nat Commun 2023; 14:4190. [PMID: 37443180 DOI: 10.1038/s41467-023-39956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Developing more extensive methods to understand the underlying structure-property relationship of mechanochromic luminescent molecules is demanding but remains challenging. Herein, the effect of host-guest interaction on the mechanochromic properties of organic molecules is illustrated. A series of pyridinium-functionalized triphenylamine derivatives show bathochromic-shifted emission upon mechanical stimulation. These derivatives bind to cucurbit[8]uril to form homoternary host-guest inclusion complexes through host-stabilized intermolecular charge transfer interactions. Remarkably, the homoternary complexes exhibit longer emission than that of free guests in the solid state (even longer than ground guests), and a further bathochromic-shifted emission is observed upon grinding. Additionally, a heteroternary complex constructed through the encapsulation of pyrene (donor) and pyridinium (acceptor) guest pair in cucurbit[8]uril also displays the mechanochromic luminescent property. This work not only discloses the effect of host-guest inclusion on the mechanochromic property of organic molecules, but also provides a principle and a facile way to design the sequentially red-shifted mechanochromic materials.
Collapse
Affiliation(s)
- Dongdong Sun
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Yong Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Xie Han
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China.
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, PR China.
| |
Collapse
|
3
|
Two-photon fluorescence imaging and specifically biosensing of norepinephrine on a 100-ms timescale. Nat Commun 2023; 14:1419. [PMID: 36918539 PMCID: PMC10014876 DOI: 10.1038/s41467-023-36869-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Norepinephrine (NE) is a key neurotransmitter in the central nervous system of organisms; however, specifically tracking the transient NE dynamics with high spatiotemporal resolution in living systems remains a great challenge. Herein, we develop a small molecular fluorescent probe that can precisely anchor on neuronal cytomembranes and specifically respond to NE on a 100-ms timescale. A unique dual acceleration mechanism of molecular-folding and water-bridging is disclosed, which boosts the reaction kinetics by ˃105 and ˃103 times, respectively. Benefiting from its excellent spatiotemporal resolution, the probe is applied to monitor NE dynamics at the single-neuron level, thereby, successfully snapshotting the fast fluctuation of NE levels at neuronal cytomembranes within 2 s. Moreover, two-photon fluorescence imaging of acute brain tissue slices reveals a close correlation between downregulated NE levels and Alzheimer's disease pathology as well as antioxidant therapy.
Collapse
|
4
|
Wu Q, Lei Q, Zhong HC, Ren TB, Sun Y, Zhang XB, Yuan L. Fluorophore-based host-guest assembly complexes for imaging and therapy. Chem Commun (Camb) 2023; 59:3024-3039. [PMID: 36785939 DOI: 10.1039/d2cc06286k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, supramolecular chemistry with its unique properties has received considerable attention in many fields. Supramolecular fluorescent systems constructed on the basis of macrocyclic hosts are not only effective in overcoming the limitations of imaging and diagnostic reagents, but also in enhancing their performances. This paper summarizes the recent advances in supramolecular fluorescent systems based on host-guest interactions and their application in bioimaging and therapy as well as the challenges and prospects in developing novel supramolecular fluorescent systems.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Qian Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hai-Chen Zhong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
5
|
Li Y, Yan C, Li Q, Cao L. Successive construction of cucurbit[8]uril-based covalent organic frameworks from a supramolecular organic framework through photochemical reactions in water. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Chen C, Pan Y, Li D, Han Y, Zhang QW, Tian Y. An Intramolecular Charge Transfer-Förster Resonance Energy Transfer Integrated Unimolecular Platform for Two-Photon Ratiometric Fluorescence Sensing of Methionine Sulfoxide Reductases in Live-Neurons and Mouse Brain Tissues. Anal Chem 2022; 94:6289-6296. [PMID: 35412308 DOI: 10.1021/acs.analchem.2c00415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxidative stress in organisms is a factor leading to a series of diseases including tumors and neurological disorders, while methionine sulfoxide reductases (Msrs) may provide an antioxidant and self-repair mechanism through redox cycles of methionine residues in proteins. Thus, it is important to understand the crucial role of Msrs in maintaining the redox homeostasis. However, it remains a great challenge for real-time and quantitative monitoring of Msrs in live systems due to the lack of appropriate sensing tools. Herein, a novel unimolecular platform integrating the intramolecular charge transfer (ICT) and Förster resonance energy transfer (FRET) dual mechanisms was successfully developed. By employing the highly specific Msrs-catalyzed reduction from the electron-withdrawing sulfoxide moiety in the probe to an electron-donating sulfide group, a synergistic ICT-FRET activation process was achieved, leading to a ratiometric fluorescence response toward Msrs with high selectivity, sensitivity, and accuracy. Moreover, benefiting from the favorable features, including mitochondria-targeting, near-infrared two-photon excitation, low cytotoxicity, good stability, and biocompatibility, the probe was successfully used for monitoring mitochondrial Msrs levels in live-neurons, and a positively correlated up-regulation of endogenous Msrs levels under O2•- stimulation was observed for the first time, confirming a Msrs-involved adaptive antioxidant mechanism in neurons. Furthermore, two-photon microscopic imaging of various regions in Alzheimer's disease (AD) mice brains revealed a down-regulated Msrs levels compared with that in normal brains, especially in the cornuammonis of the hippocampus region, which may in turn lead to an aggravation of AD pathogenesis due to the weakened antioxidant and self-repair capability of neurons.
Collapse
Affiliation(s)
- Chen Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Yue Pan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Dong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Yujie Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Qi-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| |
Collapse
|