1
|
Choi J, Hyun J. Hydrochromic film for dynamic information storage using cellulose nanofibers and silica nanoparticles. Carbohydr Polym 2024; 327:121663. [PMID: 38171657 DOI: 10.1016/j.carbpol.2023.121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
A hydrochromic composite film was fabricated by incorporating silica nanoparticles (SiNPs) with cellulose nanofibers (CNFs). The CNF/SiNP composite film underwent a reversible change in transparency in response to external moisture variation. The CNFs improved the dimensional stability of the CNF/SiNP composite film and induced morphological differences in SiNP agglomerates, which control the water vapor condensation in a porous film. The condensed water in the pores reduced the difference in refractive index over the CNF/SiNP film, enhancing its transparency. The selective transparency of the composite film was challenged by printing CNF/SiNP inks at different composition ratios. The differing susceptibility of the printed patterns to moisture provided selective transparency at specific patterns, which can store dynamic information such as QR or numerical codes by simple water vapor adsorption and desorption.
Collapse
Affiliation(s)
- Junsik Choi
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinho Hyun
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Xu M, Li X, Zhou D, Chen Y, Zhang L, Yao L, Liu Y. Light and Humidity Dual-Responsive Anti-Counterfeiting Films Based on Hydrogen-Bonded Cholesteric Liquid Crystal Polymers with Spiropyran. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58955-58966. [PMID: 38052001 DOI: 10.1021/acsami.3c16079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
There is still significant room for improvement when combining structural color with fluorescence patterns in dual anti-counterfeiting and dynamic anti-counterfeiting labels. In this study, we achieved significant breakthroughs under dual anti-counterfeiting conditions by using the structural color properties of the hydrogen-bonded cholesteric liquid crystal (HBCLC) and combining them with the fluorescence dye spiropyran (SP) to create anti-counterfeiting patterns. The anti-counterfeiting label can only display storage information after meeting the conditions of humidity and ultraviolet light (UV) and has the functions of dynamic encryption and repeated reading. We adjusted the center of the reflection band of the HBCLC film to transition from red to infrared under 40-90% relative humidity (RH) conditions and used it as a background film to draw anti-counterfeiting patterns with SP. Since these fluorescence dyes can switch between merocyanine (MC) (red) and SP (colorless) under UV and visible light conditions, when combined with the HBCLC, orthogonal dynamic encryption was achieved. Additionally, with the adsorption of SP, the reflection band of HBCLC films under the same humidity range increased from around 160 nm to around 260 nm, greatly improving the sensitivity to humidity changes. Furthermore, under UV conditions, it can still emit red fluorescence, demonstrating a polymorphic encryption feature, which greatly increased the complexity of the anti-counterfeiting pattern with significant significance to dynamic anti-counterfeiting and information storage.
Collapse
Affiliation(s)
- Minxing Xu
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Xiaolan Li
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Dong Zhou
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Yuzhou Chen
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Lingli Zhang
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Lishuang Yao
- Department of Physics, College of Science, Shantou University, Shantou 515063, China
| | - Yongjun Liu
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
3
|
Zhou MX, Jin F, Wang JY, Dong XZ, Liu J, Zheng ML. Dynamic Color-Switching of Hydrogel Micropillar Array under Ethanol Vapor for Optical Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304384. [PMID: 37480176 DOI: 10.1002/smll.202304384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Responsive structural colors from artificially engineered micro/nanostructures are critical to the development of anti-counterfeiting, optical encryption, and intelligent display. Herein, the responsive structural color of hydrogel micropillar array is demonstrated under the external stimulus of ethanol vapor. Micropillar arrays with full color are fabricated via femtosecond laser direct writing by controlling the height and diameter of the micropillars according to the FDTD simulation. Color-switching of the micropillar arrays is achieved in <1 s due to the formation of liquid film among micropillars. More importantly, the structural color blueshift of the micropillar arrays is sensitive to the micropillar diameter, instead of the micropillar height. The micropillar array with a diameter of 772 nm takes 400 ms to complete blueshift under ethanol vapor, while that with a diameter of 522 nm blueshifts at 2400 ms. Microscale patterns are realized by employing the size-dependent color-switching of designed micropillar arrays under ethanol vapor. Moreover, Morse code and directional blueshift of structural colors are realized in the micropillar arrays. The advantages of controllable color-switching of the hydrogel micropillar array would be prospective in the areas of optical encryption, dynamic display, and anti-counterfeiting.
Collapse
Affiliation(s)
- Ming-Xia Zhou
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Feng Jin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Jian-Yu Wang
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| |
Collapse
|
4
|
Sun C, Lu H, Yue CY, Fei H, Wu S, Wang S, Lei XW. Multiple Light Source-Excited Organic Manganese Halides for Water-Jet Rewritable Luminescent Paper and Anti-Counterfeiting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56176-56184. [PMID: 36468498 DOI: 10.1021/acsami.2c18363] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rewritable luminescent paper is particularly crucial, considering the ultrahigh paper consumption and confidential information security, but a highly desirable stimuli-responsive smart luminescent material with excellent water solubility has rarely been studied. Herein, a new type of rewritable paper made by highly efficient green light emissive zero-dimensional (0D) organic manganese halides is rationally designed by virtue of the reversible photoluminescence (PL) off-on switching. Specifically, the green emission can be linearly quenched by water vapor in a wide humidity range and again recovered in a dry atmosphere, which make it a smart hydrochromic PL off-on switching and humidity sensor. Benefiting from the reversible luminescence off-on switch and excellent water solubility, rewritable luminescent paper is realized through water-jet security printing technology on 0D halide-coated commercial paper with high resolution. The printed/written information can be easily cleaned by slight heating with outstanding "write-erase-write" cycle capabilities. In addition, multiple light source-induced coincident green light emissions further provide convenience to realize anti-counterfeiting, encryption and decryption of confidential information, and so forth. This work highlights the superiority of dynamic ionic-bonded 0D organic manganese halides as reversible PL switching materials in rewritable luminescent paper, high-security-level information printing, storage and protection technologies, and so forth.
Collapse
Affiliation(s)
- Chen Sun
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong273155, P. R. China
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai200092, P. R. China
| | - Hao Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong273155, P. R. China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai200092, P. R. China
| | - Shaofan Wu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
| | - Shuaihua Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong273155, P. R. China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
| |
Collapse
|