1
|
Yang Y, Jiang S, Stanciu SG, Peng H, Wu A, Yang F. Photodynamic therapy with NIR-II probes: review on state-of-the-art tools and strategies. MATERIALS HORIZONS 2024; 11:5815-5842. [PMID: 39207201 DOI: 10.1039/d4mh00819g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In 2022 10% of the world's population was aged 65+, and by 2100 this segment is expected to hit 25%. These demographic changes place considerable pressure over healthcare systems worldwide, which results in an urgent need for accurate, inexpensive and non-invasive ways to treat cancers, a family of diseases correlated with age. Among the therapeutic tools that gained important attention in this context, photodynamic therapies (PDT), which use photosensitizers to produce cytotoxic substances for selectively destroying tumor cells and tissues under light irradiation, profile as important players for next-generation nanomedicine. However, the development of clinical applications is progressing at slow pace, due to still pending bottlenecks, such as the limited tissue penetration of the excitation light, and insufficient targeting performance of the therapeutic probes to fully avoid damage to normal cells and tissues. The penetration depth of long-wavelength near infrared (NIR) light is significantly higher than that of short-wavelength UV and visible light, and thus NIR light in the second window (NIR-II) is acknowledged as the preferred phototherapeutic means for eliminating deep-seated tumors, given the higher maximum permissible exposure, reduced phototoxicity and low autofluorescence, among others. Upon collective multidisciplinary efforts of experts in materials science, medicine and biology, multifunctional NIR-II inorganic or organic photosensitizers have been widely developed. This review overviews the current state-of-the art on NIR-II-activated photosensitizers and their applications for the treatment of deep tumors. We also place focus on recent efforts that combine NIR-II activated PDT with other complementary therapeutic routes such as photothermal therapy, chemotherapy, immunotherapy, starvation, and gas therapies. Finally, we discuss still pending challenges and problems of PDT and provide a series of perspectives that we find useful for further extending the state-of-the art on NIR-II-triggered PDT.
Collapse
Affiliation(s)
- Yiqian Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Stefan G Stanciu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, Bucharest 060042, Romania
| | - Hao Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Fang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
2
|
Jarak I, Ramos S, Caldeira B, Domingues C, Veiga F, Figueiras A. The Many Faces of Cyclodextrins within Self-Assembling Polymer Nanovehicles: From Inclusion Complexes to Valuable Structural and Functional Elements. Int J Mol Sci 2024; 25:9516. [PMID: 39273469 PMCID: PMC11395033 DOI: 10.3390/ijms25179516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Most chemotherapeutic agents are poorly soluble in water, have low selectivity, and cannot reach the tumor in the desired therapeutic concentration. On the other hand, sensitive hydrophilic therapeutics like nucleic acids and proteins suffer from poor bioavailability and cell internalization. To solve this problem, new types of controlled release systems based on nano-sized self-assemblies of cyclodextrins able to control the speed, timing, and location of therapeutic release are being developed. Cyclodextrins are macrocyclic oligosaccharides characterized by a high synthetic plasticity and potential for derivatization. Introduction of new hydrophobic and/or hydrophilic domains and/or formation of nano-assemblies with therapeutic load extends the use of CDs beyond the tried-and-tested CD-drug host-guest inclusion complexes. The recent advances in nano drug delivery have indicated the benefits of the hybrid amphiphilic CD nanosystems over individual CD and polymer components. This review provides a comprehensive overview of the most recent advances in the design of CDs self-assemblies and their use for delivery of a wide range of therapeutic molecules. It aims to offer a valuable insight into the many roles of CDs within this class of drug nanocarriers as well as current challenges and future perspectives.
Collapse
Affiliation(s)
- Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Sara Ramos
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Beatriz Caldeira
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cátia Domingues
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
3
|
Chen H, Xing C, Lei H, Yan B, Zhang H, Tong T, Guan Y, Kang Y, Pang J. ROS-driven supramolecular nanoparticles exhibiting efficient drug delivery for chemo/Chemodynamic combination therapy for Cancer treatment. J Control Release 2024; 368:637-649. [PMID: 38484895 DOI: 10.1016/j.jconrel.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Drug-based supramolecular self-assembling delivery systems have enhanced the bioavailability of chemotherapeutic drugs and reduced systemic side effects; however, improving the delivery efficiency and responsive release ability of these systems remains challenging. This study focuses primarily on the utilization of per-6-thio-β-cyclodextrin (CD) to link a significant quantity of paclitaxel (PTX) via ROS-sensitive thioketal (TK) linkages (designated as CDTP), thereby allowing efficiently drug release when exposed to high levels of reactive oxygen species (ROS) in the tumor microenvironment. To construct these supramolecular nanoparticles (NPs) with CDTP, we introduced PEGylated ferrocene (Fc) through host-guest interactions. The intracellular hydrogen peroxide (H2O2) is converted into hydroxyl radicals (•OH) through the Fc-catalyzed Fenton reaction. Additionally, the generated Fc+ consumes the antioxidant glutathione (GSH). In both in vivo and in vitro experiments, CDTP@Fc-PEG NPs were absorbed effectively by tumor cells, which increased levels of ROS and decreased levels of GSH, disrupting the redox balance of cancer cells and increasing their sensitivity to chemotherapy. Furthermore, CDTP@Fc-PEG NPs exhibited high tumor accumulation and cytotoxicity without causing significant toxicity to healthy organs. Collectively, our results suggest CDTP@Fc-PEG NPs as a promising supramolecular nano-delivery platform for high drug-loading of PTX and synergistic chemotherapy.
Collapse
Affiliation(s)
- Huikun Chen
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chengyuan Xing
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Hanqi Lei
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Binyuan Yan
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tongyu Tong
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yupeng Guan
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
4
|
Pujari AK, Kaur R, Reddy YN, Paul S, Gogde K, Bhaumik J. Design and Synthesis of Metalloporphyrin Nanoconjugates for Dual Light-Responsive Antimicrobial Photodynamic Therapy. J Med Chem 2024; 67:2004-2018. [PMID: 38241140 DOI: 10.1021/acs.jmedchem.3c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Antimicrobial photodynamic therapy (APDT) utilizes photosensitizers (PSs) that eradicate a broad spectrum of bacteria in the presence of light and molecular oxygen. On the other hand, some light sources such as ultraviolet (UVB and UVC) have poor penetration and high cytotoxicity, leading to undesired PDT of the PSs. Herein, we have synthesized conjugatable mesosubstituted porphyrins and extensively characterized them. Time-dependent density functional theory (TD-DFT) calculations revealed that metalloporphyrin EP (5) is a suitable candidate for further applications. Subsequently, the metalloporphyrin was conjugated with lignin-based zinc oxide nanocomposites (ZnOAL and ZnOKL) to develop hydrophilic nanoconjugates (ZnOAL@EP and ZnOKL@EP). Upon dual light (UV + green light) exposure, nanoconjugates showed enhanced singlet oxygen generation ability and also demonstrated pH responsiveness. These nanoconjugates displayed significantly improved APDT efficiency (4-7 fold increase) to treat bacterial infection under dual light irradiation.
Collapse
Affiliation(s)
- Anil Kumar Pujari
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- Indian Institute of Science Education and Research (IISER), Knowledge City, Sector 81, S. A. S. Nagar, Mohali, Punjab 140306, India
| | - Ravneet Kaur
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
| | - Yeddula Nikhileshwar Reddy
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- Indian Institute of Science Education and Research (IISER), Knowledge City, Sector 81, S. A. S. Nagar, Mohali, Punjab 140306, India
| | - Shatabdi Paul
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001, India
| | - Kunal Gogde
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, Chandigarh 160014, India
| | - Jayeeta Bhaumik
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector 81, S.A.S. Nagar, Mohali, Punjab 140308, India
| |
Collapse
|
5
|
Xing C, Zheng X, Deng T, Zeng L, Liu X, Chi X. The Role of Cyclodextrin in the Construction of Nanoplatforms: From Structure, Function and Application Perspectives. Pharmaceutics 2023; 15:pharmaceutics15051536. [PMID: 37242778 DOI: 10.3390/pharmaceutics15051536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclodextrins (CyDs) in nano drug delivery systems have received much attention in pursuit of good compatibility, negligible toxicity, and improved pharmacokinetics of drugs. Their unique internal cavity has widened the application of CyDs in drug delivery based on its advantages. Besides this, the polyhydroxy structure has further extended the functions of CyDs by inter- and intramolecular interactions and chemical modification. Furthermore, the versatile functions of the complex contribute to alteration of the physicochemical characteristics of the drugs, significant therapeutic promise, a stimulus-responsive switch, a self-assembly capability, and fiber formation. This review attempts to list recent interesting strategies regarding CyDs and discusses their roles in nanoplatforms, and may act as a guideline for developing novel nanoplatforms. Future perspectives on the construction of CyD-based nanoplatforms are also discussed at the end of this review, which may provide possible direction for the construction of more rational and cost-effective delivery vehicles.
Collapse
Affiliation(s)
- Chengyuan Xing
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoming Zheng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tian Deng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ling Zeng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xin Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xinjin Chi
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Qian Y, Wang J, Bu W, Zhu X, Zhang P, Zhu Y, Fan X, Wang C. Targeted implementation strategies of precise photodynamic therapy based on clinical and technical demands. Biomater Sci 2023; 11:704-718. [PMID: 36472233 DOI: 10.1039/d2bm01384c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
With the development of materials science, photodynamic-based treatments have gradually entered clinics. Photodynamic therapy is ideal for cancer treatment due to its non-invasive and spatiotemporal properties and is the first to be widely promoted in clinical practice. However, the shortcomings resulting from the gap between technical and clinical demands, such as phototoxicity, low tissue permeability, and tissue hypoxia, limit its wide applications. This article reviews the available data regarding the pharmacological and clinical factors affecting the efficacy of photodynamic therapy, such as photosensitizers and oxygen supply, disease diagnosis, and other aspects of photodynamic therapy. In addition, the synergistic treatment of photodynamic therapy with surgery and nanotechnology is also discussed, which is expected to provide inspiration for the design of photodynamic therapy strategies.
Collapse
Affiliation(s)
- Yun Qian
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Jialun Wang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Wenbo Bu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Xiaoyan Zhu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Ping Zhang
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Yun Zhu
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China. .,Department of Pharmacy, Nanjing Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.,Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu Province, China
| | - Xiaoli Fan
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
7
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|