1
|
Liu Y, Zhai Y, Hu H, Liao Y, Liu H, Liu X, He J, Wang L, Wang H, Li L, Zhou X, Xiao X. Erasable and Field Programmable DNA Circuits Based on Configurable Logic Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400011. [PMID: 38698560 PMCID: PMC11234411 DOI: 10.1002/advs.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/09/2024] [Indexed: 05/05/2024]
Abstract
DNA is commonly employed as a substrate for the building of artificial logic networks due to its excellent biocompatibility and programmability. Till now, DNA logic circuits are rapidly evolving to accomplish advanced operations. Nonetheless, nowadays, most DNA circuits remain to be disposable and lack of field programmability and thereby limits their practicability. Herein, inspired by the Configurable Logic Block (CLB), the CLB-based erasable field-programmable DNA circuit that uses clip strands as its operation-controlling signals is presented. It enables users to realize diverse functions with limited hardware. CLB-based basic logic gates (OR and AND) are first constructed and demonstrated their erasability and field programmability. Furthermore, by adding the appropriate operation-controlling strands, multiple rounds of programming are achieved among five different logic operations on a two-layer circuit. Subsequently, a circuit is successfully built to implement two fundamental binary calculators: half-adder and half-subtractor, proving that the design can imitate silicon-based binary circuits. Finally, a comprehensive CLB-based circuit is built that enables multiple rounds of switch among seven different logic operations including half-adding and half-subtracting. Overall, the CLB-based erasable field-programmable circuit immensely enhances their practicability. It is believed that design can be widely used in DNA logic networks due to its efficiency and convenience.
Collapse
Affiliation(s)
- Yizhou Liu
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuxuan Zhai
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
| | - Hao Hu
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuheng Liao
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Huan Liu
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiao Liu
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jiachen He
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Limei Wang
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
| | - Hongxun Wang
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
| | - Longjie Li
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000China
| | - Xianjin Xiao
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
2
|
Liu X, Zhang X, Yao Y, Shi P, Zeng C, Zhang Q. Construction of DNA-based molecular circuits using normally open and normally closed switches driven by lambda exonuclease. NANOSCALE 2023; 15:7755-7764. [PMID: 37051702 DOI: 10.1039/d3nr00427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Building synthetic molecular circuits is an important way to realize ion detection, information processing, and molecular computing. However, it is still challenging to implement the NOT logic controlled by a single molecule input in synthetic molecular circuits wherein the presence or absence of the molecule represents the ON or OFF state of the input. Here, based on lambda exonuclease (λ exo), for the first time, we propose the normally open (NO) and normally closed (NC) switching strategy with a unified signal transmission mechanism to build molecular circuits. Specifically, the opposite logic can be output with or without a single signal, and the state of the switch can be adjusted by the addition order and time interval of the upstream signal and switch signal, which endows the switch with time-responsive characteristics. In addition, a time-delay relay with the function of delayed disconnection is developed to realize quantitative control of outputs, which has the potential to meet the automation control need of the system. Finally, digital square and square root circuits are constructed by cascading the NO and NC switches, which demonstrates the versatility of switches. Our design can be extended to time logic and complex digital computing circuits for use in information processing and nanomachines.
Collapse
Affiliation(s)
- Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Chenyi Zeng
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
3
|
Shen H, Li Z, Dou B, Feng Q, Wang P. An amplified logic gate driven by in situ synthesis of silver nanoclusters for identification of biomarkers. Chem Commun (Camb) 2023; 59:5705-5708. [PMID: 37083922 DOI: 10.1039/d3cc00643c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
An amplified DNA logic sensor was constructed for the identification of multiple biomarkers, in which the inputs of targets triggered the disassembly of a V-shaped probe (VSP) structure by a strand displacement reaction, leading to the synthesis of silver nanoclusters (AgNCs) for electrocatalytic reduction of H2O2. The sensing platform achieved sensitive detection of methylated DNA and microRNA 122 with detection limits down to 3.4 and 4.1 fM, respectively, and can be used for the assay of clinical serum samples from healthy volunteers and liver injury patients with satisfactory results. The DNA logic sensor exhibited the advantages of convenience, low cost, and versatility without the involvement of electroactive label modification, which is helpful for disease diagnosis as well as the fundamental investigation of interfacial electrochemistry and molecular biology.
Collapse
Affiliation(s)
- Hui Shen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Zhimin Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
4
|
He S, Yang Y, Xu Z, Ling H, Wang Y, Wan L, Huang N, Ye Q, Liu Y. Development of Enzyme-Free DNA Amplifier Based on Chain Reaction Principle. Acta Biomater 2022; 149:213-219. [PMID: 35811071 DOI: 10.1016/j.actbio.2022.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/01/2022]
Abstract
Enzyme-free DNA amplifiers can amplify the signal of nucleic acid molecules. They can be applied to DNA molecular operation and nucleic acid detection. The reaction speed is the core index to evaluate DNA amplifiers. In this study, we designed a DNA amplifier based on an enzyme-free chain reaction. This DNA amplifier can release one more signal molecule in each round of reaction and trigger the next round, which significantly improved reaction speed. Moreover, because the amplifier used a stable DNA structure, the reaction can occur at room temperature. To integrate the amplifier into other DNA molecular operations, we performed the amplification reaction in a microfluidic chip module. The results showed that the amplifier can realize real-time signal feedback at a proper input molecule concentration and reach the endpoint in 40 s, even at a low relative concentration. To apply the amplifier for nucleic acid detection, we also used a conventional fluorescent polymerase chain reaction instrument for the reaction. The results showed that the amplifier specifically detected trace DNA single-stranded molecules. To solve the leakage problem of existing amplifiers, we designed a DNA molecule as the chain reaction's inhibitor, which was crucial in controlling the reaction speed and preventing leakage. STATEMENT OF SIGNIFICANCE: Traditional amplifier strategies of enzyme-free DNA amplifiers relied on a constant number of cycling molecules to catalyze the amplifier molecules' changing structure and release fluorescent signals, which lead low reaction speed. Based on an enzyme-free chain reaction, we designed a DNA amplifier which can release one more cycling molecule in each loop and trigger the next loop and significantly improve reaction speed in this study. Our analysis on microfluidic chip module and PCR instrument verifies high sensitivity and selectivity. And this strategy of DNA amplifier realizes the control of reaction and prevents leakage. We believe that this automated amplification strategy could have great applications in vivo signal detection, imaging, and signal molecule translation.
Collapse
Affiliation(s)
- Songlin He
- School of Medicine, Nankai University, Tianjin 300071, China; Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yongkang Yang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Ziheng Xu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Hongkun Ling
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yu Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Li Wan
- School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Eye Institute, Nankai University, Tianjin 300071, China
| | - Ningning Huang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, China; Nankai University Eye Institute, Nankai University, Tianjin 300071, China.
| | - Yin Liu
- School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Eye Institute, Nankai University, Tianjin 300071, China.
| |
Collapse
|