1
|
Liu X, Li Z, Chong B, Kang J, Zhang S, Chen M, Wang C, Ji K. Electrochemically Dealloying Engineering toward Integrated Monolithic Electrodes with Superior Electrochemical Li-Storage Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401698. [PMID: 38794861 DOI: 10.1002/smll.202401698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Indexed: 05/26/2024]
Abstract
Integrated monolithic electrodes (IMEs) free of inactive components demonstrate great potential in boosting energy-power densities and cycling life of lithium-ion batteries. However, their practical applications are significantly limited by low active substance loading (< 4.0 mg cm-2 and 1.0 g cm-3), complicated manufacturing process, and high fabrication cost. Herein, employing industrial Cu-Mn alloy foil as a precursor, a simple neutral salt solution-mediated electrochemical dealloying strategy is proposed to address such problems. The resultant Cu-Mn IMEs achieve not only a significantly larger active material loading due to the in situ generated Cu2O and MnOx (ca. 16.0 mg cm-2 and 1.78 g cm-3), simultaneously fast transport of ions and electrons due to the well-formed nanoporous structure and built-in Cu current collector, but also high structural stability due to the interconnected ligaments and suitable free space to relieve the volume expansion upon lithiation. As a result, they demonstrate remarkable performances including large specific capacities (> 5.7 mAh cm-2), remarkable pseudocapacitive effect despite the battery-type constitutes, long cycling life, and good working condition in a lithium-ion full cell. This study sheds new light on the further development of IMEs, enriches the existing dealloying techniques, and builds a bridge between the two.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
| | - Ziheng Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
| | - Boyang Chong
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
| | - Jianli Kang
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Mingming Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chengyang Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Kemeng Ji
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
2
|
Sandhu ZA, Imtiaz K, Raza MA, Ashraf A, Tubassum A, Khan S, Farwa U, Bhalli AH, Al-Sehemi AG. Beyond graphene: exploring the potential of MXene anodes for enhanced lithium-sulfur battery performance. RSC Adv 2024; 14:20032-20047. [PMID: 38911835 PMCID: PMC11191053 DOI: 10.1039/d4ra02704c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
The high theoretical energy density of Li-S batteries makes them a viable option for energy storage systems in the near future. Considering the challenges associated with sulfur's dielectric properties and the synthesis of soluble polysulfides during Li-S battery cycling, the exceptional ability of MXene materials to overcome these challenges has led to a recent surge in the usage of these materials as anodes in Li-S batteries. The methods for enhancing anode performance in Li-S batteries via the use of MXene interfaces are thoroughly investigated in this study. This study covers a wide range of techniques such as surface functionalization, heteroatom doping, and composite structure design for enhancing MXene interfaces. Examining challenges and potential downsides of MXene-based anodes offers a thorough overview of the current state of the field. This review encompasses recent findings and provides a thorough analysis of advantages and disadvantages of adding MXene interfaces to improve anode performance to assist researchers and practitioners working in this field. This review contributes significantly to ongoing efforts for the development of reliable and effective energy storage solutions for the future.
Collapse
Affiliation(s)
- Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Kainat Imtiaz
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Adnan Ashraf
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Areej Tubassum
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Sajawal Khan
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Umme Farwa
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Ali Haider Bhalli
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University Abha 61413 Saudi Arabia
| |
Collapse
|
3
|
Chen Y, Li S, Chen J, Gao L, Guo P, Wei C, Fu J, Xu Q. Sulfur-bridged bonds enabled structure modulation and space confinement of MnS for superior sodium-ion capacitors. J Colloid Interface Sci 2024; 664:360-370. [PMID: 38479272 DOI: 10.1016/j.jcis.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Manganese sulfide (MnS) is a promising converion-type anode for sodium storage, owing to the virtues of high theoretical capacity, coupled with it crustal abundance and cost-effectiveness. Nevertheless, MnS suffers from inadequate electronic conductivity, sluggish Na+ reaction kinetics and considerable volume variation during discharge/charge process, thereby impeding its rate capability and capacity retention. Herein, a novel lamellar heterostructured composite of Fe-doped MnS nanoparticles/positively charged reduced graphene oxide (Fe-MnS/PG) was synthesized to overcome these issues. The Fe-doping can accelerate the ion/electron transfer, endowing fast electrochemical kinetics of MnS. Meanwhile, the graphene space confinement with strong MnSC bond interactions can facilite the interfacial electron transfer, hamper volume expansion and aggregation of MnS nanoparticles, stabilizing the structural integrity, thus improving the Na+ storage reversibility and cyclic stability. Combining the synergistic effect of Fe-doping and space confinement with strong MnSC bond interactions, the as-produced Fe-MnS/PG anode presents a remarkable capacity of 567 mAh/g at 0.1 A/g and outstanding rate performance (192 mAh/g at 10 A/g). Meanwhile, the as-assembled sodium-ion capacitor (SIC) can yield a high energy density of 119 Wh kg-1 and a maximum power density of 17500 W kg-1, with capacity retention of 77 % at 1 A/g after 5000 cycles. This work offers a promising strategy to develop MnS-based practical SICs with high energy and long lifespan, and paves the way for fabricating advanced anode materials.
Collapse
Affiliation(s)
- Yining Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shaohui Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jingwei Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Lin Gao
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, PR China
| | - Pengzhi Guo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Cong Wei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Qun Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
4
|
Muthukutty B, Kumar PS, Vivekanandan AK, Sivakumar M, Lee S, Lee D. Progress and Perspective in harnessing MXene-carbon-based composites (0-3D): Synthesis, performance, and applications. CHEMOSPHERE 2024; 355:141838. [PMID: 38561159 DOI: 10.1016/j.chemosphere.2024.141838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
MXene is recognized as a promising catalyst for versatile applications due to its abundant metal sites, physicochemical properties, and structural formation. This comprehensive review offers an in-depth analysis of the incorporation of carbon into MXene, resulting in the formation of MXene-carbon-based composites (MCCs). Pristine MXene exhibits numerous outstanding characteristics, such as its atomically thin 2D structure, hydrophilic surface nature, metallic electrical conductivity, and substantial specific surface area. The introduction of carbon guides the assembly of MCCs through electrostatic self-assembly, pairing positively charged carbon with negatively charged MXene. These interactions result in increased interlayer spacing, reduced ion/electron transport distances, and enhanced surface hydrophilicity. Subsequent sections delve into the synthesis methods for MCCs, focusing on MXene integrated with various carbon structures, including 0D, 1D, 2D, and 3D carbon. Comprehensive discussions explore the distinctive properties of MCCs and the unique advantages they offer in each application domain, emphasizing the contributions and advancements they bring to specific fields. Furthermore, this comprehensive review addresses the challenges encountered by MCCs across different applications. Through these analyses, the review promotes a deeper understanding of exceptional characteristics and potential applications of MCCs. Insights derived from this review can serve as guidance for future research and development efforts, promoting the widespread utilization of MCCs across a broad spectrum of disciplines and spurring future innovations.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Ponnaiah Sathish Kumar
- Magnetics Initiative Life Care Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 711873, Republic of Korea
| | - Alangadu Kothandan Vivekanandan
- Department of Aeronautical, Annasaheb Dange College of Engineering and Technology, Astha, Sangli district, 416301, Maharastra, India
| | - Mani Sivakumar
- Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 77, Tamilnadu, India
| | - Sungwon Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 711873, Republic of Korea.
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea.
| |
Collapse
|
5
|
Wu C, Long Z, Dai H, Li Z, Qiao H, Liu K, Wang Q, Wang K, Wei Q. Flexible Self-Supporting MOF-Based Bean Pod Cube Hollow Nanofibers for Ultralong Cycling and High Rate Na Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10545-10555. [PMID: 38358921 DOI: 10.1021/acsami.3c18941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Sodium-ion batteries (SIBs) have garnered significant attention due to their potential as an emerging energy storage solution. Tin sulfide (SnS) has emerged as a promising anode material for SIBs due to its impressive theoretical specific capacity of 1022 mA h g-1 and excellent electrical conductivity. However, its practical application has been hindered by issues such as large volume expansion, which adversely affects cycling stability and rate performance during the charge/discharge processes. In this study, a novel approach to address these issues by synthesizing the bean pod cube hollow metal-organic framework (MOF)-SnSx/NC@N-doped carbon nanofibers through a process involving electrospinning, PDA coating, and calcination. The Sn-MOF serves as a self-sacrificing template, facilitating the simultaneous dissociation of MOF and polymerization of dopamine, leading to the creation of hollow intermediates that retain tin components. Subsequent sulfidation results in the integration of the hollow MOF-SnSx/NC nanoparticles within 3D nitrogen-doped carbon nanofibers, forming the distinctive bean pod cube composite structure. This unique configuration effectively shortens the diffusion path and mitigates volume expansion for sodium ions, ultimately yielding an exceptional high rate performance of 130 mA h g-1 (10 A g-1) and an ultralong cycling performance of 328 mA h g-1 even after 3500 cycles (2 A g-1) as the anode for SIBs.
Collapse
Affiliation(s)
- Caiqin Wu
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiwen Long
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Han Dai
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhengchun Li
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Qiao
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Ke Liu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Keliang Wang
- Fraunhofer USA, Inc., Center for Midwest, Michigan State University, East Lansing, Michigan 48824, United States
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Liu R, Zhang J, Huang C, Dong C, Xu L, Zhu B, Wang L, Zhang L, Chen L. Oxygen defects engineering and structural strengthening of hydrated vanadium oxide cathode by coating glucose hydrothermal carbon and pre-embedding Mn (II) ion for high-capacity aqueous zinc ion batteries. J Colloid Interface Sci 2024; 654:279-288. [PMID: 37844499 DOI: 10.1016/j.jcis.2023.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023]
Abstract
Vanadium oxide-based cathode with unique layered structure is considered as a candidate for aqueous zinc ion batteries (AZIBs). Unfortunately, considering poor electronic conductivity, sluggish diffusion kinetics, and the destruction of layered structures in the cycling process, the actual capacity and rate capability are constrained. Herein, the glucose hydrothermal carbon (GHC) and transition metal Mn2+ ion have been utilized to incorporate hydrated vanadium oxide (Mn-VOH@GHC). The oxygen vacancies defects of VOH, induced by GHC anchored on surface and Mn2+ inserted between interlayers, provides more active sites, higher electronic conductivity, and faster ion diffusion. In addition, GHC reinforces the integrity of external structure, while Mn2+ ion acts as structural pillars to support the interlayer structure. The Mn-VOH@GHC electrode can produce a high capacity of 530 mAh/g at the current density of 0.2 A/g thanks to these crucial properties, and after 2000 cycles at a high current density of 2 A/g, it can also produce a reversible capacity of 344 mAh/g. The results suggest that the synergistic effect of defect engineering and metal ion pre-insertion provides a new idea in enhancement of the electrochemical performance of AZIBs cathode materials.
Collapse
Affiliation(s)
- Ruona Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junye Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chen Huang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ciqing Dong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Le Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bo Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linlin Wang
- Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai 200444, China.
| | - Ling Zhang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Luyang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
7
|
Li J, Pei C, Yang S, Zhang D, Sun B, Shen Z, Ni S. N-Doped Carbon Nanonecklaces with Encapsulated BiOCl Nanoparticles as High-Rate Anodes for Lithium-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:906-914. [PMID: 38130111 DOI: 10.1021/acs.langmuir.3c03052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The unique two-dimensional layered structure of BiOCl makes it highly promising for energy storage applications. In this study, we successfully synthesized BiOCl nanoparticles encapsulated in N-doped carbon nanonecklaces (BiOCl NPs/N-CNNs) using well-established electrospinning and solvothermal substitution. As an anode material for lithium-ion batteries, BiOCl NPs/N-CNNs exhibited enhanced rate performance, delivering a capacity of 220.2 mA h g-1 at 8 A g-1. Furthermore, it demonstrated remarkable long cycle stability, retaining a capacity of 200.5 mA h g-1 after 9000 cycles with a discharge rate of 8.0 A g-1. The superior electrochemical performance can be attributed to the stacked layered structure of BiOCl, facilitated by van der Waals force, as well as the ingenious nanonecklace structures. These structures not only provide fast ion diffusion pathways but also enhance electrolyte penetration and offer more active sites for Li+ insertion and extraction. Additionally, the nanonecklace structure prevents the aggregation of nanopolyhedra, promoting the complete reaction of BiOCl with Li+. Moreover, the unique nanopolyhedron structure alleviates the stress caused by the volume expansion of Bi nanoparticles during cycling and reduces the internal resistance of the electrode.
Collapse
Affiliation(s)
- Jintong Li
- College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, People's Republic of China
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Cunyuan Pei
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Song Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Dongmei Zhang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Bing Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Zexiang Shen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Shibing Ni
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, People's Republic of China
| |
Collapse
|
8
|
Zhang L, Liu J, Xiao D, Chen Y, Zhang S, Yan L, Gu X, Zhao X. Reduced Graphene Oxide Modulated FeSe/C Anode Materials for High-Stable and Long-Life Potassium-Ion Batteries. Chemistry 2023; 29:e202302811. [PMID: 37758686 DOI: 10.1002/chem.202302811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Reduced graphene oxide (rGO) has been demonstrated to effectively enhance the potassium storage performance of transition metal selenides due to its robust mechanical properties and high conductivity. However, the impact of rGO on the electrode-electrolyte interface, a crucial factor in the electrochemical performance of potassium-ion batteries (PIBs), requires further exploration. In this study, we synthesized a seamless architecture of rGO on FeSe/C nanocrystals (FeSe/C@rGO). Comparative analysis between FeSe/C and FeSe/C@rGO reveals that the rGO layer exhibits robust adsorption energies towards EC and DEC, inducing the formation of organic-rich solid-electrolyte interphase (SEI) without damage to the structural integrity. Furthermore, incorporating rGO triggers K+ -ions into the double electrode layer (EDL), markedly improving the transport of K+ -ions. As a PIB anode, FeSe/C@rGO exhibits a reversible capacity of 332 mAh g-1 at 200 mA g-1 after 300 cycles, along with excellent long-term cycling stability, showcasing an ultralow decay rate of only 0.086 % per cycle after 1900 cycles at 1000 mA g-1 .
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dengji Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuhui Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Shuo Zhang
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xin Gu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xuebo Zhao
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
9
|
Ansari MZ, Banitaba SN, Khademolqorani S, Kamika I, Jadhav VV. Overlooked Promising Green Features of Electrospun Cellulose-Based Fibers in Lithium-Ion Batteries. ACS OMEGA 2023; 8:43388-43407. [PMID: 38027388 PMCID: PMC10666264 DOI: 10.1021/acsomega.3c05068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Lithium-ion batteries (LIBs) are accounted as promising power tools, applicable in a wide range of energy-based equipment, from portable devices to electric vehicles. Meanwhile, approaching a cost-effective, environmentally friendly, and safe LIB array has remained sluggish yet. In this regard, cellulose, as a nontoxic natural renewable polymer, has provided a stable and cohesive electrode structure with excellent mechanical stability and reduced electrode cracking or delamination during cycling. Additionally, the porous configuration of the cellulose allows for efficient and faster ion transport as a separator component. Miniaturizing cellulose and its derivatives have revealed more fabulous characteristics for the anode, cathode, and separator resulting from the increased surface-to-volume ratio and superior porosity, as well as their thin and lightweight architectures. The focal point of this review outlines the challenges relating to the extraction and electrospinning of cellulose-based nanofibers. Additionally, the efforts to employ these membranes as the LIBs' components are elucidated. Correspondingly, despite the great performance of cellulose-based LIB structures, a research gap is sensed in this era, possibly due to the difficulties in processing the electrospun cellulose fibers. Hence, this review can provide a source of recent advancements and innovations in cellulose-based electrospun LIBs for researchers who aim to develop versatile battery structures using green materials, worthwhile, and eco-friendly processing techniques.
Collapse
Affiliation(s)
- Mohd Zahid Ansari
- School
of Materials Science and Engineering, Yeungnam
University, Gyeongsan 38541, Republic
of Korea
| | - Seyedeh Nooshin Banitaba
- Department
of Textile Engineering, Amirkabir University
of Technology, Tehran 159163-4311, Iran
- Emerald
Experts Laboratory, Isfahan Science and
Technology Town, Isfahan 84156-83111, Iran
| | - Sanaz Khademolqorani
- Emerald
Experts Laboratory, Isfahan Science and
Technology Town, Isfahan 84156-83111, Iran
- Department
of Textile Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Ilunga Kamika
- Institute
for Nanotechnology and Water Sustainability, College of Science, Engineering,
and Technology, University of South Africa, Florida Science Campus, Johannesburg 1709, South Africa
| | - Vijaykumar V. Jadhav
- Guandong
Province Key Laboratory of Materials Science and Technologies for
Energy Conversion, 241 Daxue Road, Shantou 515063, China
- Department
of Material Science and Engineering, Guangdong
Technion Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| |
Collapse
|
10
|
Yang W, Mou L, Xiao B, Chen J, Wang D, Peng S, Huang J. Mn 2+-Doped MoS 2/MXene Heterostructure Composites as Cathodes for Aqueous Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37898913 DOI: 10.1021/acsami.3c12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Typical layered transition-metal chalcogenide materials, especially MoS2, are gradually attracting widespread attention as aqueous Zn-ion battery (AZIB) cathode materials by virtue of their two-dimensional structure, tunable band gap, and abundant edges. The metastable phase 1T-MoS2 exhibits better electrical conductivity, electrochemical activity, and zinc storage capacity compared to the thermodynamically stable 2H-MoS2. However, 1T-MoS2 is still limited by the phase stability and layered structure destruction for AZIB application. Thus, a three-dimensional interconnected network heterostructure (Mn-MoS2/MXene) consisting of Mn2+-doped MoS2 and MXene with a high percentage of 1T phase (82.9%) was synthesized by hydrothermal methods and investigated as the cathode for AZIBs. It was found that S-Mn-S covalent bonds between MoS2 interlayers and Ti-O-Mo bonds at heterogeneous interfaces can act as "electron bridges" to facilitate electron and charge transfer. And the doping of Mn2+ and the combination of MXene not only expanded the interlayer spacing of MoS2 but also maintained the metastable structure of 1T-MoS2 nanosheets, acting to reduce the activation energy for Zn2+ intercalation and enhance specific capacity. The obtained Mn-MoS2/MXene contains more 1T-MoS2 and provides an improved specific capacity of 191.7 mAh g-1 at 0.1 A g-1. Compared with Mn-MoS2 and pure MoS2, it also exhibits enhanced cycling stability with a capacity retention of 80.3% after 500 cycles at 1 A g-1. Besides, the conductivity of Mn-MoS2/MXene is significantly improved, which induces a lower activation energy of the zinc ions during intercalation/deintercalation.
Collapse
Affiliation(s)
- Wenjing Yang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Lianshan Mou
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Baoquan Xiao
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jie Chen
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Di Wang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
- College of Science, Shihezi University, Shihezi, Xinjiang Uyghur Autonomous Region 832003, People's Republic of China
| | - Shanglong Peng
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Juanjuan Huang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
11
|
Guo M, Zhang H, Qi L, Zhang S, Qin Y, Deng B. Covalently bridged bond assembly of MoS 2lamellae onto a graphene sheet: an outstanding electrode for high rate and long-life lithium/sodium-ion batteries. NANOTECHNOLOGY 2023; 34:505703. [PMID: 37789673 DOI: 10.1088/1361-6528/acfaa4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/17/2023] [Indexed: 10/05/2023]
Abstract
The practical application of Molybdenum sulphide (MoS2) electrodes has been hindered by its structural instability, and poor electrical conductivity. To enhance the cycle stability and rate performance of MoS2in lithium/sodium-ion batteries (LIBs/SIBs), we synthesized a graphene-supported MoS2composite (MoS2@rGO) with affluent covalent bridged bonds through a facile and scalable hydrothermal and annealing process. The covalent bridged bonds of Mo-S-C, Mo-O-C and C-O-S provide an effective charge transfer path between MoS2and graphene, facilitating fast charge hopping and improving rate performance. As anode materials for LIBs, the MoS2@rGO exhibited exceptional long-term cycle life (906 mAh g-1at 1.0 A g-1after 400 cycles) and outstanding rate capability (1267.7/314.7 mAh g-1at 0.1/6.5 A g-1). Additionally, the MoS2@rGO electrode demonstrated a stable reversible capacity of 521.7 mAh g-1at 1.0 A g-1after 700 cycles and excellent rate capabilities of 665.1 and 326.3 mAh g-1at 0.1 and 10.0 A g-1in SIBs. The edge Mo of MoS2is directly coupled with the oxygen of the functional group on rGO, achieved by adjusting the pH value of the solution to tune the surface charge feature, can effectively enhance the structural stability of electrode even under higher current density.
Collapse
Affiliation(s)
- Mengyuan Guo
- State Key Laboratory Cultivation Base for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Huipei Zhang
- State Key Laboratory Cultivation Base for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Luyao Qi
- State Key Laboratory Cultivation Base for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Shan Zhang
- State Key Laboratory Cultivation Base for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Yanmin Qin
- State Key Laboratory Cultivation Base for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Binglu Deng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528231, People's Republic of China
| |
Collapse
|
12
|
Tian S, Wang D, Liu Z, Liu G, Zeng Q, Sun X, Yang H, Han C, Tao K, Peng S. Highly Reversible Lithium-Ion Battery with Excellent Rate Performance and Cycle Stability Based on a Ti 3C 2/CoS 2 Composite Anode. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44996-45004. [PMID: 37700536 DOI: 10.1021/acsami.3c09605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Transition metal sulfide (TMS) CoS2 is considered an ideal anode material for new-generation lithium-ion batteries (LIBs) because of its high specific capacity, high electrochemical activity, and low cost. However, CoS2 is prone to volume expansion and structural collapse when it participates in the internal conversion reaction of the battery, which limits its practical application. After analyzing the failure mechanism of CoS2 as the anode material of LIBs, the concept of nanoengineered materials is introduced here. CoS2 particles are nanosized and stabilized by constructing a composite structure on an alkali-treated two-dimensional Ti3C2 Mxene conductive network. Both experiments and theoretical calculations show that special Ti-O-Co bonds are formed at the interface of the Ti3C2/CoS2 composite through oxygen-containing functional groups. Ti-O-Co bonding with adjustable electronic characteristics can effectively promote the utilization rate of anode materials, electronic conductivity, and ionic diffusivity and thus enhance the redox reaction kinetics of the device. When the Ti3C2/CoS2 composite is used as the anode material for LIBs, it still provides a high specific capacity of 405.8 mAh g-1 after 100 cycles at 0.1 A g-1. After running for 1000 cycles at a high current of 1 A g-1, the capacity retention is still close to 100%. Also, high cycle stability under the condition of highly active material loading (10.58 mg cm-2) and low electrolyte/active material ratio (10 μL mg-1) is achieved. This work provides a new idea for the development of commercial LIBs as anode materials.
Collapse
Affiliation(s)
- Shuhao Tian
- National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Di Wang
- National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhe Liu
- National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guo Liu
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qi Zeng
- National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiao Sun
- National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongcen Yang
- National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Cong Han
- National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kun Tao
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shanglong Peng
- National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
13
|
Xu H, Gao C, Kong L, Li D, Lin J. Constructing Hierarchical Porous MoO 2 @Mo 2 N@C Composite via a Confined Pyrolysis Synthetic Strategy Towards Lithium-Ion Battery Anodes. Chemistry 2023; 29:e202301565. [PMID: 37358246 DOI: 10.1002/chem.202301565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Molybdenum dioxide (MoO2 ) demonstrates a big potential toward lithium-ion storage due to its high theoretical capacity. The sluggish reaction kinetics and large volume change during cycling process, however, unavoidably lead to inferior electrochemical performance, thus failing to satisfy the requirements of practical applications. Herein, we developed a molybdenum-based oxyacid salt confined pyrolysis strategy to achieve a novel hierarchical porous MoO2 @Mo2 N@C composite. A two-step successive annealing process was proposed to obtain a hybrid phase of MoO2 and Mo2 N, which was used to further improve the electrochemical performance of MoO2 -based anode. We demonstrate that the well-dispersed MoO2 nanoparticles can ensure ample active sites exposure to the electrolyte, while conductive Mo2 N quantum dots afford pseudo-capacitive response, which conduces to the migration of ions and electrons. Additionally, the interior voids could provide buffer spaces to surmount the effect of volume change, thereby avoiding the fracture of MoO2 nanoparticles. Benefiting from the aforesaid synergies, the as-obtained MoO2 @Mo2 N@C electrode demonstrates a striking initial discharge capacity (1760.0 mAh g-1 at 0.1 A g-1 ) and decent long-term cycling stability (652.5 mAh g-1 at 1.0 A g-1 ). This work provides a new way for the construction of advanced anode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Huizhong Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Chang Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Linghui Kong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Dongxv Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Jianjian Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| |
Collapse
|
14
|
Zhang H, Liu B, Lu Z, Hu J, Xie J, Hao A, Cao Y. Sulfur-Bridged Bonds Heightened Na-Storage Properties in MnS Nanocubes Encapsulated by S-Doped Carbon Matrix Synthesized via Solvent-Free Tactics for High-Performance Hybrid Sodium Ion Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207214. [PMID: 36670333 DOI: 10.1002/smll.202207214] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The exploitation of electrode materials with ability to balance capacity and kinetics between cathode and anode is a challenge for sodium-ion hybrid capacitors (SIHCs). Mn-based anode materials are limited by poor electrical conductivity, sluggish reaction kinetics, large volume variation, weak cycling stability, and inferior reversible capacity. Herein, MnS nanocubes encapsulated in S-doped porous carbon matrix (MSC) with strong sulfur-bridged bond interactions (CSMn) are successfully synthesized by solvent-free tactics. The CSMn bonds generated between MnS and carbon significantly inhibit the aggregation of nanostructural MnS cubes, restrict the volume expansion, and stabilize the nanostructure, which improves the Na+ storage reversibility and stability. Moreover, S-doped porous carbon enhances the electrical conductivity and electrons/ions diffusion rate, which boosts a fast kinetic reaction. As expected, MSC anode presents an outstanding reversible capacity of 600 mAh g-1 at 0.2 A g-1 and a long-term stable capacity of 357 mAh g-1 for 1000 cycles at a high current density of 10 A g-1 in sodium-ion batteries (SIBs). The as-assembled SIHCs deliver a high energy density of 109 W h kg-1 and a high power output of 98 W kg-1 , with 88% capacity retention at 2 A g-1 after 2000 cycles and practical applications (55 LEDs can be lighted for 10 min).
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Baolin Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Aize Hao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| |
Collapse
|
15
|
Ding C, Li S, Zeng X, Wang W, Wang M, Liu T, Liang C. Precise Construction of Sn/C Composite Membrane with Graphene-Like Sn-in-Carbon Structural Units toward Hyperstable Anode for Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12189-12201. [PMID: 36812463 DOI: 10.1021/acsami.2c22220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A new-type binder-free Sn/C composite membrane with densely stacked Sn-in-carbon nanosheets was prepared by vacuum-induced self-assembly of graphene-like Sn alkoxide and following in situ thermal conversion. The successful implementation of this rational strategy is based on the controllable synthesis of graphene-like Sn alkoxide by using Na-citrate with the critical inhibitory effect on polycondensation of Sn alkoxide along the a and b directions. Density functional theory calculations reveal that graphene-like Sn alkoxide can be formed under the joint action of oriented densification along the c axis and continuous growth along the a and b directions. The Sn/C composite membrane constructed by graphene-like Sn-in-carbon nanosheets can effectively buffer volume fluctuation of inlaid Sn during cycling and much enhance the kinetics of Li+ diffusion and charge transfer with the developed ion/electron transmission paths. After temperature-controlled structure optimization, Sn/C composite membrane displays extraordinary Li storage behaviors, including reversible half-cell capacities up to 972.5 mAh g-1 at a density of 1 A g-1 for 200 cycles, 885.5/729.3 mAh g-1 over 1000 cycles at large current densities of 2/4 A g-1, and terrific practicability with reliable full-cell capacities of 789.9/582.9 mAh g-1 up to 200 cycles under 1/4 A g-1. It is worthy of noting that this strategy may open up new opportunities to fabricate advanced membrane materials and construct hyperstable self-supporting anodes in lithium ion batteries.
Collapse
Affiliation(s)
- Chuan Ding
- Changzhou Key Lab of Construction Engineering Structure and Material Properties, School of Civil Engineering and Architecture, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, P R China
| | - Shujin Li
- Changzhou Key Lab of Construction Engineering Structure and Material Properties, School of Civil Engineering and Architecture, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, P R China
| | - Xueqin Zeng
- Changzhou Key Lab of Construction Engineering Structure and Material Properties, School of Civil Engineering and Architecture, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, P R China
| | - Wei Wang
- Changzhou Key Lab of Construction Engineering Structure and Material Properties, School of Civil Engineering and Architecture, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, P R China
| | - Min Wang
- Changzhou Key Lab of Construction Engineering Structure and Material Properties, School of Civil Engineering and Architecture, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, P R China
| | - Tianyu Liu
- Changzhou Key Lab of Construction Engineering Structure and Material Properties, School of Civil Engineering and Architecture, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, P R China
| | - Can Liang
- Changzhou Key Lab of Construction Engineering Structure and Material Properties, School of Civil Engineering and Architecture, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, P R China
| |
Collapse
|