1
|
Yang L, Guo J, Chen S, Li A, Tang J, Guo N, Yang J, Zhang Z, Zhou J. Tailoring the catalytic sites by regulating photogenerated electron/hole pairs separation spatially for simultaneous selective oxidation of benzyl alcohol and hydrogen evolution. J Colloid Interface Sci 2024; 659:776-787. [PMID: 38215614 DOI: 10.1016/j.jcis.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Photocatalytic selective oxidation of alcohols into aldehydes and H2 is a green strategy for obtaining both value-added chemicals and clean energy. Herein, a dual-purpose ZnIn2S4@CdS photocatalyst was designed and constructed for efficient catalyzing benzyl alcohol (BA) into benzaldehyde (BAD) with coupled H2 evolution. To address the deep-rooted problems of pure CdS, such as high recombination of photogenerated carriers and severe photo-corrosion, while also preserving its superiority in H2 production, ZnIn2S4 with a suitable band structure and adequate oxidizing capability was chosen to match CdS by constructing a coupled reaction. As designed, the photoexcited holes (electrons) in the CdS (ZnIn2S4) were spatially separated and transferred to the ZnIn2S4 (CdS) by electrostatic pull from the built-in electric field, leading to expected BAD production (12.1 mmol g-1 h-1) at the ZnIn2S4 site and H2 generation (12.2 mmol g-1 h-1) at the CdS site. This composite photocatalyst also exhibited high photostability due to the reasonable hole transfer from CdS to ZnIn2S4. The experimental results suggest that the photocatalytic transform of BA into BAD on ZnIn2S4@CdS is via a carbon-centered radical mechanism. This work may extend the design of advanced photocatalysts for more chemicals by replacing H2 evolution with N2 fixation or CO2 reduction in the coupled reactions.
Collapse
Affiliation(s)
- Lifang Yang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China.
| | - Jiao Guo
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Siyan Chen
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Aoqi Li
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Jun Tang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Ning Guo
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Jie Yang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China.
| | - Jianwei Zhou
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| |
Collapse
|
2
|
Zhang B, Chen J, Li Y, Zhu Y, Li S, Zhu F, Gao X, Liao S, Wang S, Xiao W, Shi S, Chen C. Engineering of Pore Design and Oxygen Vacancy on High-Entropy Oxides by a Microenvironment Tailoring Strategy. Inorg Chem 2024; 63:5689-5700. [PMID: 38485494 DOI: 10.1021/acs.inorgchem.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
High-entropy oxides (HEOs) exhibit abundant structural diversity due to cationic and anionic sublattices with independence, rendering them superior in catalytic applications compared to monometallic oxides. Nevertheless, the conventional high-temperature calcination approach undermines the porosity and reduces the exposure of active sites (such as oxygen vacancies, OVs) in HEOs, leading to diminished catalytic efficiency. Herein, we fabricate a series of HEOs with a large surface area utilizing a microenvironment modulation strategy (m-NiMgCuZnCo: 86 m2/g, m-MnCuCoNiFe: 67 m2/g, and m-FeCrCoNiMn: 54 m2/g). The enhanced porosity in m-NiMgCuZnCo facilitates the presentation of numerous OVs, exhibiting an exceptional catalytic performance. This tactic creates inspiration for designing HEOs with rich porosity and active species with vast potential applications.
Collapse
Affiliation(s)
- Bingzhen Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
- School of Power and Mechanical Engineering, The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Jian Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Ying Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yahui Zhu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shengchen Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Fangyu Zhu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Xiahong Gao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Sheng Liao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
3
|
Chang Y, Zhang Y, Hu T, Chen W, Tang T, Luo E, Jia J. Carbonaceous Material Modified MoO 2 Nanospheres with Oxygen Vacancies for Enhanced Visible-Light Photocatalytic Oxidative Coupling of Benzylamine. Molecules 2023; 28:4739. [PMID: 37375295 DOI: 10.3390/molecules28124739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Surface oxygen vacancy (OV) plays a pivotal role in the activation of molecular oxygen and separation of electrons and holes in photocatalysis. Herein, carbonaceous materials-modified MoO2 nanospheres with abundant surface OVs (MoO2/C-OV) were successfully synthesized via glucose hydrothermal processes. In situ introduction of carbonaceous materials triggered a reconstruction of the MoO2 surface, which introduced abundant surface OVs on the MoO2/C composites. The surface oxygen vacancies on the obtained MoO2/C-OV were confirmed via electron spin resonance spectroscopy (ESR) and X-ray photoelectron spectroscopy (XPS). The surface OVs and carbonaceous materials boosted the activation of molecular oxygen to singlet oxygen (1O2) and superoxide anion radical (•O2-) in selectively photocatalytic oxidation of benzylamine to imine. The conversion of benzylamine was 10 times that of pristine MoO2 nanospheres with a high selectivity under visible light irradiation at 1 atm air pressure. These results open an avenue to modify Mo-based materials for visible light-driven photocatalysis.
Collapse
Affiliation(s)
- Yuhong Chang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan 030032, China
| | - Yanxia Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan 030032, China
| | - Tianjun Hu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan 030032, China
| | - Wenwen Chen
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan 030032, China
| | - Tao Tang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan 030032, China
| | - Ergui Luo
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan 030032, China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan 030032, China
| |
Collapse
|