1
|
Shin J, Kim JH, Lee J, Lee S, Park JH, Jeong SY, Jeong HJ, Han JT, Seo SH, Lee SK, Kim J. Ultra-Mild Fabrication of Highly Concentrated SWCNT Dispersion Using Spontaneous Charging in Solvated Electron System. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1094. [PMID: 38998699 PMCID: PMC11243719 DOI: 10.3390/nano14131094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
The efficient dispersion of single-walled carbon nanotubes (SWCNTs) has been the subject of extensive research over the past decade. Despite these efforts, achieving individually dispersed SWCNTs at high concentrations remains challenging. In this study, we address the limitations associated with conventional methods, such as defect formation, excessive surfactant use, and the use of corrosive solvents. Our novel dispersion method utilizes the spontaneous charging of SWCNTs in a solvated electron system created by dissolving potassium in hexamethyl phosphoramide (HMPA). The resulting charged SWCNTs (c-SWCNTs) can be directly dispersed in the charging medium using only magnetic stirring, leading to defect-free c-SWCNT dispersions with high concentrations of up to 20 mg/mL. The successful dispersion of individual c-SWCNT strands is confirmed by their liquid-crystalline behavior. Importantly, the dispersion medium for c-SWCNTs exhibits no reactivity with metals, polymers, or other organic solvents. This versatility enables a wide range of applications, including electrically conductive free-standing films produced via conventional blade coating, wet-spun fibers, membrane electrodes, thermal composites, and core-shell hybrid microparticles.
Collapse
Affiliation(s)
- Junho Shin
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Republic of Korea
- School of Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Hoon Kim
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Republic of Korea
| | - Jungeun Lee
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Republic of Korea
| | - Sangyong Lee
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Republic of Korea
| | - Jong Hwan Park
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Republic of Korea
| | - Seung Yol Jeong
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Republic of Korea
| | - Hee Jin Jeong
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Republic of Korea
| | - Joong Tark Han
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Republic of Korea
| | - Seon Hee Seo
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Republic of Korea
| | - Seoung-Ki Lee
- School of Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jungmo Kim
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Republic of Korea
| |
Collapse
|
2
|
Zhang Z, Kong Y, Gao J, Han X, Lian Z, Liu J, Wang WJ, Yang X. Engineering strong man-made cellulosic fibers: a review of the wet spinning process based on cellulose nanofibrils. NANOSCALE 2024. [PMID: 38465763 DOI: 10.1039/d3nr06126d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
With the goal of sustainable development, manufacturing continuous high-performance fibers based on sustainable resources is an emerging research direction. However, compared to traditional synthetic fibers, plant fibers have limited length/diameter and uncontrollable natural defects, while regenerated cellulose fibers such as viscose and Lyocell suffer from inferior mechanical properties. Wet-spun fibers based on nanocelluloses especially cellulose nanofibrils (CNFs) offer superior mechanical performance since CNFs are the fundamental high-performance building blocks of plant cell walls. This review aims to summarize the progress of making CNF wet-spun fibers, emphasizing on the whole wet spinning process including spinning suspension preparation, spinning, coagulation, washing, drying and post-stretching steps. By establishing the relationships between the nano-scale assembling structure and the macroscopic changes in the CNF dope from gels to dried fibers, effective methods and strategies to improve the mechanical properties of the final fibers are analyzed and proposed. Based on this, the opportunities and challenges for potential industrial-scale production are discussed.
Collapse
Affiliation(s)
- Zihuan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Yuying Kong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Junqi Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Xiao Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Zechun Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Jiamin Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Wen-Jun Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Xuan Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| |
Collapse
|
3
|
Wu M, Zhang P, Li M, Xu R, Zheng X, Cui Q, Cha R, Li B. Bioinspired, Robust, and Absorbable Cellulose Nanofibrils/Chitosan Filament with Remarkable Cytocompatibility and Wound Healing Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43468-43478. [PMID: 37671976 DOI: 10.1021/acsami.3c08525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Surgical threads are of great importance to prevent wound infection and accelerate tissue healing in surgical treatment. Cellulose nanofibrils (CNF) and chitosan (CS) are attracting increasing attention to be employed as biomedicine materials due to their nontoxicity, cytocompatibility, and biodegradability. However, a robust and absorbable cellulose-based surgical thread has not been explored. Therefore, in this work, a bioinspired CNF/CS composite thread containing 5% cationic polyacrylamide (CPAM) by the mass of CS was prepared, and the obtained CNF/CS-5C thread exhibited excellent mechanical properties and low swelling ratio in water due to the high cross-link degree. Especially, the tensile strength (1877 ± 107 MPa) of this thread was much higher than that of most reported CNF-based threads. Meanwhile, compared with commercial silk and Vicryl surgical threads, the CNF/CS-5C thread exhibited better in vitro cytocompatibility toward endothelial and fibroblast cells and lower inflammatory response in vivo to subcutaneous tissues of rats. In addition, the obtained thread could be regarded as a promising absorbable suture, which exhibited excellent wound healing performances in vivo. Therefore, the prepared absorbable thread will open a new window to prepare novel and advanced cellulose-based threads for medical applications.
Collapse
Affiliation(s)
- Meiyan Wu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Pai Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Mei Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China
| | - Rui Xu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xin Zheng
- Qingdao Hospital of Traditional Chinese Medicine (Municipal Hiser Hospital), Qingdao 266033, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
4
|
Wang Y, Wang M, Wang Q, Wang T, Zhou Z, Mehling M, Guo T, Zou H, Xiao X, He Y, Wang X, Rojas OJ, Guo J. Flowthrough Capture of Microplastics through Polyphenol-Mediated Interfacial Interactions on Wood Sawdust. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301531. [PMID: 37279363 DOI: 10.1002/adma.202301531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Nano-/microplastics accumulate in aquatic bodies and raise increasing threats to ecosystems and human health. The limitation of existing water cleanup strategies, especially in the context of nano-/microplastics, primarily arises from their complexity (morphological, compositional, and dimensional). Here, highly efficient and bio-based flowthrough capturing materials (bioCap) are reported to remove a broad spectrum of nano-/microplastics from water: polyethylene terephthalate (anionic, irregular shape), polyethylene (net neutral, irregular shape), polystyrene (anionic and cationic, spherical shape), and other anionic and spherical shaped particles (polymethyl methacrylate, polypropylene, and polyvinyl chloride). Highly efficient bioCap systems that adsorb the ubiquitous particles released from beverage bags are demonstrated. As evidence of removal from drinking water, the in vivo biodistribution of nano-/microplastics is profiled, confirming a significant reduction of particle accumulation in main organs. The unique advantage of phenolic-mediated multi-molecular interactions is employed in sustainable, cost-effective, and facile strategies based on wood sawdust support for the removal of challenging nano-/microplastics pollutions.
Collapse
Affiliation(s)
- Yu Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Mengyue Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, 610225, China
| | - Taoyang Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhengming Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Marina Mehling
- Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Tianyu Guo
- Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Hang Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, 610051, China
| | - Xiao Xiao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiaoling Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Orlando J Rojas
- Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
- Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T1Z4, Canada
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
5
|
Cao X, Ye C, Cao L, Shan Y, Ren J, Ling S. Biomimetic Spun Silk Ionotronic Fibers for Intelligent Discrimination of Motions and Tactile Stimuli. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300447. [PMID: 37002548 DOI: 10.1002/adma.202300447] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Innovation in the ionotronics field has significantly accelerated the development of ultraflexible devices and machines. However, it is still challenging to develop efficient ionotronic-based fibers with necessary stretchability, resilience, and conductivity due to inherent conflict in producing spinning dopes with both high polymer and ion concentrations and low viscosities. Inspired by the liquid crystalline spinning of animal silk, this study circumvents the inherent tradeoff in other spinning methods by dry spinning a nematic silk microfibril dope solution. The liquid crystalline texture allows the spinning dope to flow through the spinneret and form free-standing fibers under minimal external forces. The resultant silk-sourced ionotronic fibers (SSIFs) are highly stretchable, tough, resilient, and fatigue-resistant. These mechanical advantages ensure a rapid and recoverable electromechanical response of SSIFs to kinematic deformations. Further, the incorporation of SSIFs into core-shell triboelectric nanogenerator fibers provides outstanding stable and sensitive triboelectric response to precisely and sensitively perceive small pressures. Moreover, by implementing a combination of machine learning and Internet of Things techniques, the SSIFs can sort objects made of different materials. With these structural, processing, performance, and functional merits, the SSIFs prepared herein are expected to be applied in human-machine interfaces.
Collapse
Affiliation(s)
- Xinyi Cao
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Chao Ye
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- School of Textile and Clothing, Yancheng Institute of Technology, Jiangsu, 224051, China
| | - Leitao Cao
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Yicheng Shan
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jing Ren
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| |
Collapse
|
6
|
Wu M, Liu Y, Liu C, Cui Q, Zheng X, Fatehi P, Li B. Core-Shell Filament with Excellent Wound Healing Property Made of Cellulose Nanofibrils and Guar Gum via Interfacial Polyelectrolyte Complexation Spinning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205867. [PMID: 36433832 DOI: 10.1002/smll.202205867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Natural polymer-based sutures have attractive cytocompatibility and degradability in surgical operations. Herein, anionic cellulose nanofibrils (ACNF) and cationic guar gum (CGG) are employed to produce nontoxic CGG/ACNF composite filament with a unique core-shell structure via interfacial polyelectrolyte complexation (IPC) spinning. The comprehensive characterization and application performance of the resultant CGG/ACNF filament as a surgical suture are thoroughly investigated in comparison with silk and PGLA (90% glycolide and 10% l-lactide) sutures in vitro and in vivo, respectively. Results show that the CGG/ACNF filament with the typical core-shell structure and nervation pattern surface exhibits a high orientation index (0.74) and good mechanical properties. The tensile strength and knotting strength of CGG/ACNF suture prepared by twisting CGG/ACNF filaments increase by 69.5%, and CGG/ACNF suture has a similar friction coefficient to silk and PGLA sutures. Moreover, CGG/ACNF suture with antibiosis and cytocompatibility exhibits better growth promotion of cells than silk suture, similar to PGLA suture in vitro. In addition, the stitching experiment of mice with the CGG/ACNF suture further confirms better healing properties and less inflammation in vivo than silk and PGLA sutures do. Hence, the CGG/ACNF suture with a simple preparation method and excellent application properties is promising in surgical operations.
Collapse
Affiliation(s)
- Meiyan Wu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yinuo Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Chao Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xin Zheng
- Qingdao Hospital of Traditional Chinese Medicine (Municipal Hiser Hospital), Qingdao, 266033, China
| | - Pedram Fatehi
- Green Processes Research Centre and Biorefining Research Institute, Lakehead University, Thunder Bay, ON P7B5E1, Canada
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| |
Collapse
|