1
|
Ye BC, Li WH, Zhang X, Chen J, Gao Y, Wang D, Pan H. Advancing Heterogeneous Organic Synthesis With Coordination Chemistry-Empowered Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402747. [PMID: 39291881 DOI: 10.1002/adma.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Indexed: 09/19/2024]
Abstract
For traditional metal complexes, intricate chemistry is required to acquire appropriate ligands for controlling the electron and steric hindrance of metal active centers. Comparatively, the preparation of single-atom catalysts is much easier with more straightforward and effective accesses for the arrangement and control of metal active centers. The presence of coordination atoms or neighboring functional atoms on the supports' surface ensures the stability of metal single-atoms and their interactions with individual metal atoms substantially regulate the performance of metal active centers. Therefore, the collaborative interaction between metal and the surrounding coordination environment enhances the initiation of reaction substrates and the formation and transformation of crucial intermediate compounds, which imparts single-atom catalysts with significant catalytic efficacy, rendering them a valuable framework for investigating the correlation between structure and activity, as well as the reaction mechanism of catalysts in organic reactions. Herein, comprehensive overviews of the coordination interaction for both homogeneous metal complexes and single-atom catalysts in organic reactions are provided. Additionally, reflective conjectures about the advancement of single-atom catalysts in organic synthesis are also proposed to present as a reference for later development.
Collapse
Affiliation(s)
- Bo-Chao Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Xia Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
2
|
Sun F, Song J, Wen H, Cao X, Zhao F, Qin J, Mao W, Tang X, Dong L, Long Y. Ce 4+/Ce 3+ Redox Effect-Promoted CdS/CeO 2 Heterojunction Photocatalyst for the Atom Economic Synthesis of Imines under Visible Light. Inorg Chem 2023; 62:17961-17971. [PMID: 37857562 DOI: 10.1021/acs.inorgchem.3c02907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The employment of stoichiometric alcohols and amines for imine synthesis under mild and green reaction conditions is still a challenge in the field. In this work, based on our research foundation in the thermocatalytic synthesis of imines over ceria, a CdS/CeO2 heterojunction photocatalyst was constructed and successfully realized the atom-economic synthesis of imines under visible light without additives at room temperature. Mechanistic experiments and corresponding characterizations indicated that the CdS/CeO2 heterojunction can improve the separation efficiency of photogenerated carriers, which can be further enhanced by the Ce4+/Ce3+ redox pair by rapidly combining photogenerated e-. The in situ-reduced Ce3+ can better activate O2 to form Ce-O-O·, which, together with h+, efficiently accelerates alcohol oxidation, which is the rate-determined step for the synthesis of imines via oxidative coupling reaction of alcohol and amine. In addition, our photocatalyst exhibited fairly decent reusability and substrate universality. This work solves problems of using base additives and excess amine or alcohol in the reported photocatalytic systems and provides new insight for designing CeO2-based photocatalytic oxidation catalysts.
Collapse
Affiliation(s)
- Fangkun Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jie Song
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - He Wen
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou 730060, P. R. China
| | - Xiao Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Feng Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiaheng Qin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Weiwen Mao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoqi Tang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Linkun Dong
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Long
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Zhang C, Xie J, Zhao C, Yang Y, An Q, Mei Z, Xu Q, Ding Y, Zhao G, Guo H. Regulating the Lithium Ions' Local Coordination Environment through Designing a COF with Single Atomic Co Site to Achieve Dendrite-Free Lithium-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304511. [PMID: 37384535 DOI: 10.1002/adma.202304511] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The detrimental growth of lithium dendrites and unstable solid electrolyte interphase (SEI) inhibit the practical application of lithium-metal batteries. Herein, atomically dispersed cobalt coordinate conjugated bipyridine-rich covalent organic framework (sp2 c-COF) is explored as an artificial SEI on the surface of the Li-metal anode to resolve these issues. The single Co atoms confined in the structure of COF enhance the number of active sites and promote electron transfer to the COF. The synergistic effects of the Co─N coordination and strong electron-withdrawing cyano-group can adsorb the electron from the donor (Co) at a maximum and create an electron-rich environment, hence further regulating the Li+ local coordination environment and achieving uniform Li-nucleation behavior. Furthermore, in situ technology and density functional theory calculations reveal the mechanism of the sp2 c-COF-Co inducing Li uniform deposition and promoting Li+ rapid migration. Based on these advantages, the sp2 c-COF-Co modified Li anode exhibits a low Li-nucleation barrier of 8 mV, and excellent cycling stability of 6000 h.
Collapse
Affiliation(s)
- Conghui Zhang
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Jiyang Xie
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Changtai Zhao
- Solid State Batteries Research Center, GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan, Guangdong, 528051, China
- China Automotive Battery Research Institute Co. Ltd. 5th Floor, No. 43 Mining Building North Sanhuan Middle Road, Beijing, 100088, China
| | - Yongxin Yang
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Qi An
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Zhiyuan Mei
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Qijun Xu
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Yuqing Ding
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Genfu Zhao
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Hong Guo
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| |
Collapse
|
4
|
Saptal VB, Ruta V, Bajada MA, Vilé G. Single-Atom Catalysis in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202219306. [PMID: 36918356 DOI: 10.1002/anie.202219306] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023]
Abstract
Single-atom catalysts hold the potential to significantly impact the chemical sector, pushing the boundaries of catalysis in new, uncharted directions. These materials, featuring isolated metal species ligated on solid supports, can exist in many coordination environments, all of which have shown important functions in specific transformations. Their emergence has also provided exciting opportunities for mimicking metalloenzymes and bridging the gap between homogeneous and heterogeneous catalysis. This Review outlines the impressive progress made in recent years regarding the use of single-atom catalysts in organic synthesis. We also illustrate potential knowledge gaps in the search for more sustainable, earth-abundant single-atom catalysts for synthetic applications.
Collapse
Affiliation(s)
- Vitthal B Saptal
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Vincenzo Ruta
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Mark A Bajada
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Gianvito Vilé
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
5
|
Wang G, Ma Y, Zhang T, Liu Y, Wang B, Zhang R, Zhao Z. Partial Sulphidation to Regulate Coordination Structure of Single Nickel Atoms on Graphitic Carbon Nitride for Efficient Solar H 2 Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205758. [PMID: 36461724 DOI: 10.1002/smll.202205758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
To develop a non-precious highly efficient cocatalyst to replace Pt on graphitic carbon nitride (g-C3 N4 ) for solar H2 production is great significant, but still remains a huge challenge. The emerging single-atom catalyst presents a promising strategy for developing highly efficient non-precious cocatalyst owing to its unique adjustability of local coordination environment and electronic structure. Herein, this work presents a facile approach to achieve single Ni sites (Ni1 -N2 S) with unique local coordination structure featuring one Ni atom coordinated with two nitrogen atoms and one sulfur atom, confirmed by high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, and density functional theory calculation. Thanks to the unique electron structure of Ni1 -N2 S sites, the 1095 µmol g-1 h-1 of high H2 evolution rate with 4.1% of apparent quantum yield at 420 nm are achieved. This work paves a pathway for designing a highly efficient non-precious transition metal cocatalyst for photocatalytic H2 evolution.
Collapse
Affiliation(s)
- Guanchao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Ying Ma
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Ting Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Baojun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
6
|
Wu X, Wang S, Fang J, Chen H, Liu H, Li R. Enhanced Photocatalytic Efficiency in Visible-Light-Induced NADH Regeneration by Intramolecular Electron Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38895-38904. [PMID: 35986690 DOI: 10.1021/acsami.2c11174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inspired by natural photosynthesis, photocatalytic NADH regeneration has drawn increasing interest in the recent decade as it provides a perfect approach for NAD+ reduction into NADH, which can be further consumed by oxidordeuctase for enzymatic redox reactions. However, two issues still remain unsolved in this procedure. First, the photocatalytic efficiency in NAD+ hydrogenation requires further improvement. Second, the rhodium electron mediator [Cp*Rh(bpy)H2O]2+ (M), which is always required for selective 1,4-NADH regeneration, is difficult to recover because of its good solubility in aqueous solution. Given the high price of M, it is highly wasteful and inefficient if it only spends once. Here, we report a Cp*Rh(bpy)Cl implanted conjugated microporous polymer DTS/Rh@CMPs which can be employed as a highly effective visible light photocatalysts for in situ NADH regeneration without using additional M. In addition, the insertion of Rh complex into a polymer skeleton, as demonstrated in UV-vis, fluorescence, photocurrent and electrochemical impedance, dramatically improves the light absorption capacity and the electron separation and transfer efficiency. Compared with that of DTS@CMP-1 with M, an enhanced reaction yield of 33% was determined in DTS/Rh@CMP-1 suggesting that intramolecular electron transfer has a better activity than that of intermolecular electron transfer in photocatalytic NAD+ reduction. Moreover, as the Rh complex is rooted firmly in a polymer framework, negligible Rh loss and conversion decrease in NADH regeneration are observed. When the DTS/Rh@CMP-1 was coupled with yeast alcohol dehydrogenase (YADH, from Saccharomyces cerevisiae), 1.36 mM of methanol was accumulated, implying an excellent biocompatibility of DTS/Rh@CMP-1 and a high feasibility of photobiocatalysis for formaldehyde hydrogenation.
Collapse
Affiliation(s)
- Xiewen Wu
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
| | - Song Wang
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
| | - Jing Fang
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
| | - Hui Chen
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Hongbo Liu
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Run Li
- College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
7
|
Kwak M, Bok J, Lee BH, Kim J, Seo Y, Kim S, Choi H, Ko W, Hooch Antink W, Lee CW, Yim GH, Seung H, Park C, Lee KS, Kim DH, Hyeon T, Yoo D. Ni single atoms on carbon nitride for visible-light-promoted full heterogeneous dual catalysis. Chem Sci 2022; 13:8536-8542. [PMID: 35974767 PMCID: PMC9337748 DOI: 10.1039/d2sc02174a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
Visible-light-driven organic transformations are of great interest in synthesizing valuable fine chemicals under mild conditions. The merger of heterogeneous photocatalysts and transition metal catalysts has recently drawn much attention due to its versatility for organic transformations. However, these semi-heterogenous systems suffered several drawbacks, such as transition metal agglomeration on the heterogeneous surface, hindering further applications. Here, we introduce heterogeneous single Ni atoms supported on carbon nitride (NiSAC/CN) for visible-light-driven C-N functionalization with a broad substrate scope. Compared to a semi-heterogeneous system, high activity and stability were observed due to metal-support interactions. Furthermore, through systematic experimental mechanistic studies, we demonstrate that the stabilized single Ni atoms on CN effectively change their redox states, leading to a complete photoredox cycle for C-N coupling.
Collapse
Affiliation(s)
- Minjoon Kwak
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Jinsol Bok
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
| | - Byoung-Hoon Lee
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
| | - Jongchan Kim
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Youngran Seo
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Sumin Kim
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Hyunwoo Choi
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Wonjae Ko
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
| | - Wytse Hooch Antink
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
| | - Chan Woo Lee
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
| | - Guk Hee Yim
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Hyojin Seung
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
| | - Chansul Park
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Republic of Korea
| | - Dae-Hyeong Kim
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
| | - Taeghwan Hyeon
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
| | - Dongwon Yoo
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
| |
Collapse
|