1
|
Ashraf S, Liu Y, Liu S, Mehdi S, Zhang H, Shen R, Guo X, Wu X, Jiang J, Wang Y, Li B. Synergistic Electronic Interaction in PdCu Alloy/TiO 2-NSs for Ambient Efficient Dehydrogenation of Formic Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407922. [PMID: 39530638 DOI: 10.1002/smll.202407922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Palladium-based catalysts are remarkable in endorsing hydrogen (H2) generation through formic acid (HCOOH, FA) dehydrogenation under near-ambient conditions. Hydrogen energy efficiency depends on high-performance catalyst design. In this study, Pd-Cu nanoalloy catalysts with mutable atomic ratios are successfully fabricated on TiO2 nanosheets (TiO2-NSs).The synergistic electronic interactions between Palladium (Pd) and copper (Cu) are revealed through a density of states (DOS) analysis of alloy supported over a mixed valence state of Ti linked to oxygen vacancies (Vo) in TiO2-NSs, Enhanced adsorption of target molecules reveals novel active sites for Formic acid dehydrogenation (FAD), with O─H bond cleavage via HCOO formate intermediate preceding C─H and C─O bond cleavage. Experimental and theoretical research demonstrates that the Pd-Cu/TiO2-NSs (3:7) catalyst d electron redistribution and d-band center shift lower the activation energy for O─H bond cleavage, exhibit superior H2 production than pure Pd and Cu, increasing Pd electron density due to synergistic effects from reactive crystal facets, defects, and strong metal support interactions (SMSI), lowering the activation energy for HCOOH dissociation step, generating carbon dioxide (CO2) and H2 with a unprecedented high turnover frequency (TOF) of 6268 molH2.h-1.molPd-1 at 303K with activation energy (Ea) of 15 KJ mol-1. This attempt models an efficient HCOOH-to-hydrogen catalyst.
Collapse
Affiliation(s)
- Saima Ashraf
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Huanhuan Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianji Guo
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Yongfeng Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Gao J, Wang Y, Yu Y, Zhu M, Kong W, Liu G, Luo X. Carbonized cellulose microspheres loaded with Pd NPs as catalyst in p-nitrophenol reduction and Suzuki-Miyaura coupling reaction. Int J Biol Macromol 2024; 269:131904. [PMID: 38688337 DOI: 10.1016/j.ijbiomac.2024.131904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Catalytic reduction of p-nitrophenol is usually carried out using transition metal nanoparticles such as gold, palladium, silver, and copper, especially palladium nanoparticles (Pd NPs), which are characterized by fast reaction rate, high turnover frequency, good selectivity, and high yield. However, the aggregation and precipitation of the metals lead to the decomposition of the catalyst, which results in a significant reduction of the catalytic activity. Therefore, the preparation of homogeneous stabilized palladium nanoparticles catalysts has been widely studied. Stabilized palladium nanoparticles mainly use synthetic polymers. Cellulose microspheres, as a natural polymer material with low-cost and porous fiber network structure, are excellent carriers for stabilizing metal nanoparticles. Cellulose microspheres impregnated with palladium metal nanoparticles were carbonized to have a larger specific surface area and highly dispersed palladium nanoparticles, which exhibited excellent catalytic activity in the catalytic reduction of p-nitrophenol. In this work, the cellulose carbon-based microspheres palladium (Pd@CCM) catalysts were designed and characterized by SEM, TEM, EDS, XRD, FTIR, XPS, TGA, BET, and so on. Furthermore, the catalytic performance of Pd@CCM catalysts was investigated via p-nitrophenol reduction, which showed high catalytic activity. This catalyst also exhibited excellent catalytic performance in the Suzuki-Miyaura coupling reaction. Linking aromatic monomer and benzene through Suzuki-Miyaura coupling was presented as an effective route to obtaining biaryls, and the synthesis method is low-cost and simple. In addition, Pd@CCM showed desirable recyclability while maintaining its catalytic activity even after five recycles. This work is highly suggestive of the design and application of the heterogeneous catalyst.
Collapse
Affiliation(s)
- Jiayin Gao
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Yaoyao Wang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Yuqing Yu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Mengxiang Zhu
- Department of Medical Research Center, the First Affiliated Hospital of Ningbo University, Ningbo 315010, PR China
| | - Wen Kong
- Hubei Key Lab for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China
| | - Genyan Liu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China.
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China.
| |
Collapse
|
3
|
Longo L, Taghavi S, Riello M, Ghedini E, Menegazzo F, Di Michele A, Cruciani G, Signoretto M. Waste biomasses as precursors of catalytic supports in benzaldehyde hydrogenation. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|