1
|
Garrido J, Manzanares JA. Thomson/Joule Power Compensation and the Measurement of the Thomson Coefficient. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4640. [PMID: 39336383 PMCID: PMC11433131 DOI: 10.3390/ma17184640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
The energy transported by the electric current that circulates a thermoelectric element (TE) varies with position due to the Joule and Thomson effects. The Thomson effect may enhance or compensate the Joule effect. A method for measuring the Thomson coefficient of a TE is presented. This method is based on the total compensation of the Joule and Thomson effects. The electric current then flows without delivering power to the TE or absorbing power from it. For a TE, the global Thomson/Joule compensation ratio Φ¯T/J is defined as the ratio of the power absorbed by the current due to the Thomson effect and the power delivered by the current to the TE due to the Joule effect. It can be expressed as Φ¯T/J=I0/I, where I is the electric current and I0 is the zero-power current, a quantity that is proportional to the average Thomson coefficient. When I=I0, the Thomson effect exactly compensates the Joule effect and the net power delivered by the current to the TE is zero. Since the power delivered by the current is related to the temperature distribution, temperature measurements for currents around I0 can be used as the basis for a measurement technique of the Thomson coefficient. With varying current, the difference between the temperature at the center of the TE and the mean temperature between its extremes reverses its sign at the zero-power current, I=I0. This observation suggests the possibility of measuring the Thomson coefficient, but a quantitative analysis is needed. With calculations using the constant transport coefficients model for Bi2Te0.94Se0.063 and Bi0.25Sb0.752Te3, it is theoretically shown that a null temperature detector with a sensitivity of the order of 1 mK allows for the accurate determination of the Thomson coefficient.
Collapse
Affiliation(s)
- Javier Garrido
- Departament de Termodinàmica, Universitat de Valencia, 46100 Burjassot, Spain
| | - José A Manzanares
- Departament de Termodinàmica, Universitat de Valencia, 46100 Burjassot, Spain
| |
Collapse
|
2
|
Kang M, Yeo WH. Advances in Energy Harvesting Technologies for Wearable Devices. MICROMACHINES 2024; 15:884. [PMID: 39064395 PMCID: PMC11279352 DOI: 10.3390/mi15070884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
The development of wearable electronics is revolutionizing human health monitoring, intelligent robotics, and informatics. Yet the reliance on traditional batteries limits their wearability, user comfort, and continuous use. Energy harvesting technologies offer a promising power solution by converting ambient energy from the human body or surrounding environment into electrical power. Despite their potential, current studies often focus on individual modules under specific conditions, which limits practical applicability in diverse real-world environments. Here, this review highlights the recent progress, potential, and technological challenges in energy harvesting technology and accompanying technologies to construct a practical powering module, including power management and energy storage devices for wearable device developments. Also, this paper offers perspectives on designing next-generation wearable soft electronics that enhance quality of life and foster broader adoption in various aspects of daily life.
Collapse
Affiliation(s)
- Minki Kang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Liu Z, Tian B, Li Y, Guo Z, Zhang Z, Luo Z, Zhao L, Lin Q, Lee C, Jiang Z. Evolution of Thermoelectric Generators: From Application to Hybridization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304599. [PMID: 37544920 DOI: 10.1002/smll.202304599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Considerable thermal energy is emitted into the environment from human activities and equipment operation in the course of daily production. Accordingly, the use of thermoelectric generators (TEGs) can attract wide interest, and it shows high potential in reducing energy waste and increasing energy recovery rates. Notably, TEGs have aroused rising attention and been significantly boosted over the past few years, as the energy crisis has worsened. The reason for their progress is that thermoelectric generators can be easily attached to the surface of a heat source, converting heat energy directly into electricity in a stable and continuous manner. In this review, applications in wearable devices, and everyday life are reviewed according to the type of structure of TEGs. Meanwhile, the latest progress of TEGs' hybridization with triboelectric nanogenerator (TENG), piezoelectric nanogenerator (PENG), and photovoltaic effect is introduced. Moreover, prospects and suggestions for subsequent research work are proposed. This review suggests that hybridization of energy harvesting, and flexible high-temperature thermoelectric generators are the future trends.
Collapse
Affiliation(s)
- Zhaojun Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Bian Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Shandong Province, Yantai City, Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 265503, China
| | - Yao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zijun Guo
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhongkai Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhifang Luo
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qijing Lin
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
4
|
Fan W, An Z, Liu F, Gao Z, Zhang M, Fu C, Zhu T, Liu Q, Zhao X. High-Performance Stretchable Thermoelectric Generator for Self-Powered Wearable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206397. [PMID: 36799534 PMCID: PMC10131832 DOI: 10.1002/advs.202206397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Wearable thermoelectric generators (TEGs), which can convert human body heat to electricity, provide a promising solution for self-powered wearable electronics. However, their power densities still need to be improved aiming at broad practical applications. Here, a stretchable TEG that achieves comfortable wearability and outstanding output performance simultaneously is reported. When worn on the forehead at an ambient temperature of 15 °C, the stretchable TEG exhibits excellent power densities with a maximum value of 13.8 µW cm-2 under the breezeless condition, and even as high as 71.8 µW cm-2 at an air speed of 2 m s-1 , being one of the highest values for wearable TEGs. Furthermore, this study demonstrates that this stretchable TEG can effectively power a commercial light-emitting diode and stably drive an electrocardiogram module in real-time without the assistance of any additional power supply. These results highlight the great potential of these stretchable TEGs for power generation applications.
Collapse
Affiliation(s)
- Wusheng Fan
- State Key Laboratory of Silicon Materialsand School of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Zijian An
- Biosensor National Special LaboratoryKey Laboratory for Biomedical Engineering of Education MinistryDepartment of Biomedical EngineeringZhejiang UniversityHangzhou310027China
| | - Feng Liu
- State Key Laboratory of Silicon Materialsand School of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Ziheng Gao
- State Key Laboratory of Silicon Materialsand School of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Min Zhang
- State Key Laboratory of Silicon Materialsand School of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Chenguang Fu
- State Key Laboratory of Silicon Materialsand School of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
- Shanxi‐Zheda Institute of Advanced Materials and Chemical EngineeringTaiyuan030000China
| | - Tiejun Zhu
- State Key Laboratory of Silicon Materialsand School of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
- Shanxi‐Zheda Institute of Advanced Materials and Chemical EngineeringTaiyuan030000China
| | - Qingjun Liu
- Biosensor National Special LaboratoryKey Laboratory for Biomedical Engineering of Education MinistryDepartment of Biomedical EngineeringZhejiang UniversityHangzhou310027China
| | - Xinbing Zhao
- State Key Laboratory of Silicon Materialsand School of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
5
|
Tabaie Z, Omidvar A. Human body heat-driven thermoelectric generators as a sustainable power supply for wearable electronic devices: Recent advances, challenges, and future perspectives. Heliyon 2023; 9:e14707. [PMID: 37025803 PMCID: PMC10070544 DOI: 10.1016/j.heliyon.2023.e14707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Thermoelectric generators are devices that directly convert heat flux or the temperature difference between two hot and cold surfaces into electricity. With the advancement of the Internet of Things (IoT) technology and the development of wearable and portable devices, the issue of providing a sustainable power source is one of the main challenges in the development path of these tools. Creating electric power by harvesting the waste heat from the human body is one of the effective solutions in this way. For this reason, the development and improvement of the technology of wearable thermoelectric generators have received much attention recently. Due to the low-temperature difference between the two sides of wearable thermoelectric generators and the high thermal resistance between the skin and the heated surface of these modules, the performance of these systems is highly dependent on their structural parameters and environmental factors. In this paper, it has tried to review all the previous studies regarding the impact of structural factors (such as the matching of internal and external thermal resistances, geometrical parameters of the module, design of heat source and sink, and flexibility of thermoelectric module) and environmental parameters (including the effect of ambient air temperature and humidity, skin temperature, and the interaction of power consumers with thermoelectric modules). Based on the studies, it seems that in optimizing the performance of wearable thermoelectric generators (WTEGs), it is necessary to consider the effect of the human body's thermoregulatory responses, such as skin temperature and sweating rate. The change in skin temperature directly affects the performance of WTEGs, and the change in sweating rate can also affect the thermal resistance between the skin and the hot plate and overshadow the matching of thermal resistances during operation.
Collapse
|
6
|
Janghorban M, Aradanas I, Kazemi S, Ngaju P, Pandey R. Recent Advances, Opportunities, and Challenges in Developing Nucleic Acid Integrated Wearable Biosensors for Expanding the Capabilities of Wearable Technologies in Health Monitoring. BIOSENSORS 2022; 12:986. [PMID: 36354495 PMCID: PMC9688223 DOI: 10.3390/bios12110986] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Wearable biosensors are becoming increasingly popular due to the rise in demand for non-invasive, real-time monitoring of health and personalized medicine. Traditionally, wearable biosensors have explored protein-based enzymatic and affinity-based detection strategies. However, in the past decade, with the success of nucleic acid-based point-of-care diagnostics, a paradigm shift has been observed in integrating nucleic acid-based assays into wearable sensors, offering better stability, enhanced analytical performance, and better clinical applicability. This narrative review builds upon the current state and advances in utilizing nucleic acid-based assays, including oligonucleotides, nucleic acid, aptamers, and CRISPR-Cas, in wearable biosensing. The review also discusses the three fundamental blocks, i.e., fabrication requirements, biomolecule integration, and transduction mechanism, for creating nucleic acid integrated wearable biosensors.
Collapse
Affiliation(s)
- Mohammad Janghorban
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Irvyne Aradanas
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sara Kazemi
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Philippa Ngaju
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Richa Pandey
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|