1
|
Wan Y, Hu Y, Tu H, Zhuang W, Geng X, Zhang T, Zhang J, Wen M, Yang P. Bird's Nest-Shaped Sb 2 WO 6 /D-Fru Composite for Multi-Stage Evaporator and Tandem Solar Light-Heat-Electricity Generators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302943. [PMID: 38319020 DOI: 10.1002/smll.202302943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/16/2023] [Indexed: 02/07/2024]
Abstract
Herein, an integrated solar-thermal-power protocol is presented at a micro-nanoscopic level to maximize the energy utilization efficiency involving utilization period and utilization patterns, and the nexus of freshwater production and nanogeneration is realized. This sophisticated vaporization device is constructed with the merits of thermally confined evaporation space in favor of recycling latent heat of condensation and optimizing light absorption based on the local sunlight angle of incidence. Inspired by a bird's nest, Sb2 WO6 /D-Fructose composites are prepared as photothermal absorbers to achieve a superior water evaporation rate of 2.78 kg m-2 h-1 in the Multi-stage evaporator. In addition, a synergistic tandem photo thermal-electric device with a combination of solar-driven water evaporation and further waterflow-driven hydrovoltaic generation, which can output a stable voltage of up to 360.8 mV with effective utilization of steam energy and a limited water source, is exploited. Such integrated configurations pave a pathway for clean water production and renewable power generation simultaneously toward energy issues.
Collapse
Affiliation(s)
- Yanfen Wan
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Yingfei Hu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Hongyu Tu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Wenbo Zhuang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Xuemin Geng
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Tian Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Jinghao Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Ming Wen
- Kunming Institute of Precious Metals, Kunming, 650106, China
| | - Peng Yang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| |
Collapse
|
2
|
Lin CY, Michinobu T. Conjugated photothermal materials and structure design for solar steam generation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:454-466. [PMID: 37091288 PMCID: PMC10113523 DOI: 10.3762/bjnano.14.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
With the development of solar steam generation (SSG) for clean water production, conjugated photothermal materials (PTMs) have attracted significant interest because of their advantages over metallic and inorganic PTMs in terms of high light absorption, designable molecular structures, flexible morphology, and solution processability. We review here the recent progress in solar steam generation devices based on conjugated organic materials. Conjugated organic materials are processed into fibers, membranes, and porous structures. Therefore, nanostructure design based on the concept of nanoarchitectonics is crucial to achieve high SSG efficiency. We discuss the considerations for designing SSG absorbers and describe commonly used conjugated organic materials and structural designs.
Collapse
Affiliation(s)
- Chia-Yang Lin
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
3
|
Gui Z, Xiang D. Hierarchically designed evaporators with dual-layered hydrogel/aerogel structure for efficient solar water evaporation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|