1
|
Wu X, Liu Q, Zheng L, Lin S, Zhang Y, Song Y, Wang Z. Innervate Commercial Fabrics with Spirally-Layered Iontronic Fibrous Sensors Toward Dual-Functional Smart Garments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402767. [PMID: 38953387 PMCID: PMC11434216 DOI: 10.1002/advs.202402767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Electronic fabrics exhibit desirable breathability, wearing comfort, and easy integration with garments. However, surficial deposition of electronically functional materials/compounds onto fabric substrates would consequentially alter their intrinsic properties (e.g., softness, permeability, biocompatibility, etc.). To address this issue, here, a strategy to innervate arbitrary commercial fabrics with unique spirally-layered iontronic fibrous (SLIF) sensors is presented to realize both mechanical and thermal sensing functionalities without sacrificing the intrinsic fabric properties. The mechanical sensing function is realized via mechanically regulating the interfacial ionic supercapacitance between two perpendicular SLIF sensors, while the thermal sensing function is achieved based on thermally modulating the intrinsic ionic impedance in a single SLIF sensor. The resultant SLIF sensor-innervated electronic fabrics exhibit high mechanical sensitivity of 81 N-1, superior thermal sensitivity of 34,400 Ω °C-1, and more importantly, greatly minimized mutual interference between the two sensing functions. As demonstrations, various smart garments are developed for the precise monitoring of diverse human physiological signals. Moreover, artificial intelligence-assisted object recognition with high-accuracy (97.8%) is demonstrated with a SLIF sensor-innervated smart glove. This work opens up a new path toward the facile construction of versatile smart garments for wearable healthcare, human-machine interfaces, and the Internet of Things.
Collapse
Affiliation(s)
- Xiaodong Wu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Lifei Zheng
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Sijian Lin
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiqun Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yangyang Song
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhuqing Wang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Lepak-Kuc S, Kądziela A, Staniszewska M, Janczak D, Jakubowska M, Bednarczyk E, Murawski T, Piłczyńska K, Żołek-Tryznowska Z. Sustainable, cytocompatible and flexible electronics on potato starch-based films. Sci Rep 2024; 14:18838. [PMID: 39138241 PMCID: PMC11322286 DOI: 10.1038/s41598-024-69478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Environmental concerns and climate protection are gaining increasing emphasis nowadays. A growing number of industries and scientific fields are involved in this trend. Sustainable electronics is an emerging research strand. Environmentally friendly and biodegradable or biobased raw materials can be used for the development of green flexible electronic devices, which may serve to reduce the pollution generated by plastics and electronics waste. In this work, we present cytocompatible, electrically conductive structures of nanocarbon water-soluble composites based on starch films. To accomplish this goal, potato starch-based films with glycerol as a plasticiser were developed along with a water-soluble vehicle for nanocarbon-based electroconductive pastes specifically dedicated to screen printing technology. Films were characterized by optical microscopy, scanning electron microscopy (SEM) mechanical properties and surface free energy.
Collapse
Affiliation(s)
- Sandra Lepak-Kuc
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland.
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822, Warsaw, Poland.
| | - Aleksandra Kądziela
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Daniel Janczak
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Małgorzata Jakubowska
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Ewa Bednarczyk
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
| | - Tomasz Murawski
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
| | - Katarzyna Piłczyńska
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
| | - Zuzanna Żołek-Tryznowska
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
| |
Collapse
|
3
|
Lee S, Liang X, Kim JS, Yokota T, Fukuda K, Someya T. Permeable Bioelectronics toward Biointegrated Systems. Chem Rev 2024; 124:6543-6591. [PMID: 38728658 DOI: 10.1021/acs.chemrev.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Bioelectronics integrates electronics with biological organs, sustaining the natural functions of the organs. Organs dynamically interact with the external environment, managing internal equilibrium and responding to external stimuli. These interactions are crucial for maintaining homeostasis. Additionally, biological organs possess a soft and stretchable nature; encountering objects with differing properties can disrupt their function. Therefore, when electronic devices come into contact with biological objects, the permeability of these devices, enabling interactions and substance exchanges with the external environment, and the mechanical compliance are crucial for maintaining the inherent functionality of biological organs. This review discusses recent advancements in soft and permeable bioelectronics, emphasizing materials, structures, and a wide range of applications. The review also addresses current challenges and potential solutions, providing insights into the integration of electronics with biological organs.
Collapse
Affiliation(s)
- Sunghoon Lee
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoping Liang
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Joo Sung Kim
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Zhao Z, Yang C, Li D. Skin Electrodes Based on TPU Fiber Scaffolds with Conductive Nanocomposites with Stretchability, Breathability, and Washability. MICROMACHINES 2024; 15:598. [PMID: 38793171 PMCID: PMC11122800 DOI: 10.3390/mi15050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
In the context of an aging population and escalating work pressures, cardiovascular diseases pose increasing health risks. Electrocardiogram (ECG) monitoring presents a preventive tool, but conventional devices often compromise comfort. This study proposes an approach using Ag NW/TPU composites for flexible and breathable epidermal electronics. In this new structure, TPU fibers are used to support Ag NWs/TPU nanocomposites. The TPU fiber-reinforced Ag NW/TPU (TFRAT) nanocomposites exhibit excellent conductivity, stretchability, and electromechanical durability. The composite ensures high steam permeability, maintaining stable electrical performance after washing cycles. Employing this technology, a flexible ECG detection system is developed, augmented with a convolutional neural network (CNN) for automated signal analysis. The experimental results demonstrate the system's reliability in capturing physiological signals. Additionally, a CNN model trained on ECG data achieves over 99% accuracy in diagnosing arrhythmias. This study presents TFRAT as a promising solution for wearable electronics, offering both comfort and functionality in long-term epidermal applications, with implications for healthcare and beyond.
Collapse
Affiliation(s)
| | - Chaopeng Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 5340, Xiping Road, Tianjin 300130, China;
| | - Dongchan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 5340, Xiping Road, Tianjin 300130, China;
| |
Collapse
|
5
|
Wang M, Wang X, He Z, Liu Z, Chen R, Wang K, Wu J, Han J, Zhao S, Chen Y, Liu J. Stretchable, Washable, and Anti-Ultraviolet i-Textile-Based Wearable Device for Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13052-13059. [PMID: 38414333 DOI: 10.1021/acsami.3c18203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Smart textiles with multifunction and highly stable performance are essential for their application in wearable electronics. Despite the advancement of various smart textiles through the decoration of conductive materials on textile surfaces, improving their stability and functionality remains a challenging topic. In this study, we developed an ionic textile (i-textile) with air permeability, water resistance, UV resistance, and sensing capabilities through in situ photopolymerization of ionogel onto the textile surface. The i-textile presents air permeability comparable to that of bare textile while possessing enhanced UV resistance. Remarkably, the i-textile maintains excellent electrical properties after washing 20 times or being subjected to 300 stretching cycles at 30% tension. When applied to human joint motion detection, the i-textile-based sensors can effectively distinguish joint motion based on their sensitivity and response speed. This research presents a novel method for developing smart textiles that further advances wearable electronics.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xuerong Wang
- School of Energy Science and Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Zixi He
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Zhengdong Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Rong Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jicai Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jikun Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Shulin Zhao
- School of Energy Science and Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Yuhui Chen
- School of Energy Science and Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
6
|
Wang Z, Ding Y, Yuan W, Chen H, Chen W, Chen C. Active Claw-Shaped Dry Electrodes for EEG Measurement in Hair Areas. Bioengineering (Basel) 2024; 11:276. [PMID: 38534550 DOI: 10.3390/bioengineering11030276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
EEG, which can provide brain alteration information via recording the electrical activity of neurons in the cerebral cortex, has been widely used in neurophysiology. However, conventional wet electrodes in EEG monitoring typically suffer from inherent limitations, including the requirement of skin pretreatment, the risk of superficial skin infections, and signal performance deterioration that may occur over time due to the air drying of the conductive gel. Although the emergence of dry electrodes has overcome these shortcomings, their electrode-skin contact impedance is significantly high and unstable, especially in hair-covered areas. To address the above problems, an active claw-shaped dry electrode is designed, moving from electrode morphological design, slurry preparation, and coating to active electrode circuit design. The active claw-shaped dry electrode, which consists of a claw-shaped electrode and active electrode circuit, is dedicated to offering a flexible solution for elevating electrode fittings on the scalp in hair-covered areas, reducing electrode-skin contact impedance and thus improving the quality of the acquired EEG signal. The performance of the proposed electrodes was verified by impedance, active electrode circuit, eyes open-closed, steady-state visually evoked potential (SSVEP), and anti-interference tests, based on EEG signal acquisition. Experimental results show that the proposed claw-shaped electrodes (without active circuit) can offer a better fit between the scalp and electrodes, with a low electrode-skin contact impedance (18.62 KΩ@1 Hz in the hairless region and 122.15 KΩ@1 Hz in the hair-covered region). In addition, with the active circuit, the signal-to-noise ratio (SNR) of the acquiring EEG signal was improved and power frequency interference was restrained, therefore, the proposed electrodes can yield an EEG signal quality comparable to wet electrodes.
Collapse
Affiliation(s)
- Zaihao Wang
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Yuhao Ding
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Wei Yuan
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Hongyu Chen
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Wei Chen
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chen Chen
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| |
Collapse
|
7
|
Wang Q, Li Y, Lin Y, Sun Y, Bai C, Guo H, Fang T, Hu G, Lu Y, Kong D. A Generic Strategy to Create Mechanically Interlocked Nanocomposite/Hydrogel Hybrid Electrodes for Epidermal Electronics. NANO-MICRO LETTERS 2024; 16:87. [PMID: 38214840 PMCID: PMC10786775 DOI: 10.1007/s40820-023-01314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/02/2023] [Indexed: 01/13/2024]
Abstract
Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body. As the primary compliant conductors used in these devices, metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin. Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces. However, chemical modifications are typically needed for reliable bonding, which can alter their original properties. To overcome this limitation, this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes. In this physical process, soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface, which forms an interpenetrating network with the hydrogel. The microfoam-enabled bonding strategy is generally compatible with various polymers. The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids. These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels. They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing muscle contractions. Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems.
Collapse
Affiliation(s)
- Qian Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yanyan Li
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yong Lin
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yuping Sun
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Chong Bai
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Haorun Guo
- College of Chemical Engineering and Technology, Engineering Research Center of Seawater Utilization Technology of Ministry of Education, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Ting Fang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Gaohua Hu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yanqing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China.
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, 210093, People's Republic of China.
| | - Desheng Kong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, People's Republic of China.
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
8
|
Lin Y, Fang T, Bai C, Sun Y, Yang C, Hu G, Guo H, Qiu W, Huang W, Wang L, Tao Z, Lu YQ, Kong D. Ultrastretchable Electrically Self-Healing Conductors Based on Silver Nanowire/Liquid Metal Microcapsule Nanocomposites. NANO LETTERS 2023. [PMID: 38047765 DOI: 10.1021/acs.nanolett.3c03670] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Stretchable conductive nanocomposites are essential for deformable electronic devices. These conductors currently face significant limitations, such as insufficient deformability, significant resistance changes upon stretching, and drifted properties during cyclic deformations. To tackle these challenges, we present an electrically self-healing and ultrastretchable conductor in the form of bilayer silver nanowire/liquid metal microcapsule nanocomposites. These nanocomposites utilize silver nanowires to establish their initial excellent conductivity. When the silver nanowire networks crack during stretching, the microcapsules are ruptured to release the encased liquid metal for recovering the electrical properties. This self-healing capability allows the nanocomposite to achieve ultrahigh stretchability for both uniaxial and biaxial strains, minor changes in resistance during stretching, and stable resistance after repetitive deformations. The conductors have been used to create skin-attachable electronic patches and stretchable light-emitting diode arrays with enhanced robustness. These developments provide a bioinspired strategy to enhance the performance and durability of conductive nanocomposites.
Collapse
Affiliation(s)
- Yong Lin
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Ting Fang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Chong Bai
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Cheng Yang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Gaohua Hu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Haorun Guo
- College of Chemical Engineering and Technology, Engineering Research Center of Seawater Utilization Technology of Ministry of Education, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Weijie Qiu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Weixi Huang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Lin Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Zihao Tao
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Jeong S, Oh J, Kim H, Bae J, Ko SH. Pattern design of a liquid metal-based wearable heater for constant heat generation under biaxial strain. iScience 2023; 26:107008. [PMID: 37332675 PMCID: PMC10275728 DOI: 10.1016/j.isci.2023.107008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023] Open
Abstract
As the wearable heater is increasingly popular due to its versatile applications, there is a growing need to improve the tensile stability of the wearable heater. However, maintaining the stability and precise control of heating in resistive heaters for wearable electronics remains challenging due to multiaxial dynamic deformation with human motion. Here, we propose a pattern study for a circuit control system without complex structure or deep learning of the liquid metal (LM)-based wearable heater. The LM direct ink writing (DIW) method was used to fabricate the wearable heaters in various designs. Through the study about the pattern, the significance of input power per unit area for steady average temperature with tension was proven, and the directionality of the pattern was shown to be a factor that makes feedback control difficult due to the difference in resistance change according to strain direction. For this issue, a wearable heater with the same minimal resistance change regardless of the tension direction was developed using Peano curves and sinuous pattern structure. Lastly, by attaching to a human body model, the wearable heater with the circuit control system shows stable heating (52.64°C, with a standard deviation of 0.91°C) in actual motion.
Collapse
Affiliation(s)
- Seongmin Jeong
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jinhyeok Oh
- Bio-Robotics and Control Lab, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Korea
| | - Hongchan Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Joonbum Bae
- Bio-Robotics and Control Lab, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Institute of Engineering Research/Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
10
|
Raczyński T, Janczak D, Szałapak J, Lepak-Kuc S, Baraniecki D, Muszyńska M, Kądziela A, Wójkowska K, Krzemiński J, Jakubowska M. Influence of the Heat Transfer Process on the Electrical and Mechanical Properties of Flexible Silver Conductors on Textiles. Polymers (Basel) 2023; 15:2892. [PMID: 37447537 DOI: 10.3390/polym15132892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
With the increase in the popularity of wearable and integrated electronics, a proper way to manufacture electronics on textiles is needed. This study aims to analyze the effect of different parameters of the heat transfer process on the electrical and mechanical properties of flexible electronics made on textiles, presenting it as a viable method of producing such electronics. Wires made from different composites based on silver microparticles and an insulating layer were screen-printed on a release film. Then, they were transferred onto a polyester cloth using heat transfer with different parameters. Research showed that different heat transfer parameters could influence the electrical properties of screen-printed wires, changing their resistance between -15% and +150%, making it imperative to adjust those properties depending on the materials used. Changes in the settings of heat transfer also influence mechanical properties, increasing adhesion between layers at higher temperatures. This study shows the importance of tailoring heat transfer properties and the differences that these properties make.
Collapse
Affiliation(s)
- Tomasz Raczyński
- Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 00-661 Warsaw, Poland
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Daniel Janczak
- Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 00-661 Warsaw, Poland
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Jerzy Szałapak
- Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 00-661 Warsaw, Poland
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Sandra Lepak-Kuc
- Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 00-661 Warsaw, Poland
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Dominik Baraniecki
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Maria Muszyńska
- Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 00-661 Warsaw, Poland
| | - Aleksandra Kądziela
- Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 00-661 Warsaw, Poland
| | - Katarzyna Wójkowska
- Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 00-661 Warsaw, Poland
| | - Jakub Krzemiński
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Małgorzata Jakubowska
- Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 00-661 Warsaw, Poland
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 02-822 Warsaw, Poland
| |
Collapse
|
11
|
Wu X, Zhao H, Zhou E, Zou Y, Xiao S, Ma S, You R, Li P. Two-Dimensional Transition Metal Dichalcogenide Tunnel Field-Effect Transistors for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23583-23592. [PMID: 37020349 DOI: 10.1021/acsami.3c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Field-effect transistor (FET) biosensors based on two-dimensional (2D) materials have drawn significant attention due to their outstanding sensitivity. However, the Boltzmann distribution of electrons imposes a physical limit on the subthreshold swing (SS), and a 2D-material biosensor with sub-60 mV/dec SS has not been realized, which hinders further increase of the sensitivity of 2D-material FET biosensors. Here, we report tunnel FETs (TFETs) based on a SnSe2/WSe2 heterostructure and observe the tunneling effect of a 2D material in aqueous solution for the first time with an ultralow SS of 29 mV/dec. A bilayer dielectric (Al2O3/HfO2) and graphene contacts, which significantly reduce the leakage current in solution and contact resistance, respectively, are crucial to the realization of the tunneling effect in solution. Then, we propose a novel biosensing method by using tunneling current as the sensing signal. The TFETs show an extremely high pH sensitivity of 895/pH due to ultralow SS, surpassing the sensitivity of FET biosensors based on a single 2D material (WSe2) by 8-fold. Specific detection of glucose is realized, and the biosensors show a superb sensitivity (3158 A/A for 5 mM), wide sensing range (from 10-9 to 10-3 M), low detection limit (10-9 M), and rapid response rate (11 s). The sensors also exhibit the ability of monitoring glucose in complex biofluid (sweat). This work provides a platform for ultrasensitive biosensing. The discovery of the tunneling effect of 2D materials in aqueous solution may stimulate further fundamental research and potential applications.
Collapse
Affiliation(s)
- Xian Wu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Haojie Zhao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Enze Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Yixuan Zou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| | - Shanpeng Xiao
- China Mobile Research Institute, Beijing 100053, China
| | - Shuai Ma
- China Mobile Research Institute, Beijing 100053, China
| | - Rui You
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science & Technology University, Beijing 100192, China
| | - Peng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100084, China
| |
Collapse
|
12
|
Lin Y, Chen X, Lu Q, Wang J, Ding C, Liu F, Kong D, Yuan W, Su W, Cui Z. Thermally Laminated Lighting Textile for Wearable Displays with High Durability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5931-5941. [PMID: 36688806 DOI: 10.1021/acsami.2c20681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Textile-based light-emitting devices are attracting more and more attention because of their potential applications in smart clothing, human-computer interfaces, safety warnings, entertainment fashion, etc. However, simple and efficient manufacturing of luminescent devices on fabrics even clothing with excellent stretchability and washability remains challenging. Here, a solvent-free thermal lamination process combined with laser engraving has been proposed to fabricate electroluminescent (EL) devices on textiles. All the preprepared components, such as the bottom electrode, the EL layer, and the top transparent electrode, were thermally laminated on the surface of textiles employing thermoplastic polyurethane (TPU) as the binding matrix. The stretchability, luminance, and interface adhesion of the EL devices were systematically studied, showing excellent mechanical durability at high temperature, in humid environments, withstanding repeated machine washing, and resistant to various forms of physical damage. As a demonstration of potential application, textile-based EL devices were fabricated, which could display colored and pixelated patterns as well as dynamic images. The thermal lamination technology developed in this work can potentially enable people to DIY (do it yourself) fabricate light-emitting devices on clothing using daily tools, which could facilitate the widespread use of textile-based wearable displays.
Collapse
Affiliation(s)
- Yong Lin
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Xiaolian Chen
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Qianying Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, People's Republic of China
| | - Jiayi Wang
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Chen Ding
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Fuxing Liu
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Desheng Kong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, People's Republic of China
| | - Wei Yuan
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Wenming Su
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zheng Cui
- Printable Electronics Research Center, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| |
Collapse
|
13
|
Lin Y, Wang L, Ma T, Ding L, Cao S, Hu G, Zhang J, Ma X, Sun Y, Wang Q, Kong D. Highly Conductive and Compliant Silver Nanowire Nanocomposites by Direct Spray Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57290-57298. [PMID: 36520145 DOI: 10.1021/acsami.2c18761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The silver nanowire (Ag NW)/elastomer nanocomposite represents a prototypical form of a compliant conductor for flexible and stretchable electronic devices. The widespread implementations are currently hindered by the complicated procedures to effectively disperse Ag NWs into elastomer matrices. In this study, we report a facile and scalable coating process to create Ag NW nanocomposites on various flexible/stretchable substrates. As-synthesized Ag NWs from the high-yield polyol-reduction approach are homogeneously dispersed into a variety of dilute elastomer solutions, thereby enabling direct spray deposition into highly compliant conductors. The as-prepared nanocomposite exhibits excellent conductivity (∼11,000 S/cm) and high deformability to 100% strain. The stable electrical properties are largely retained under repetitive mechanical manipulations including stretching, bending, and folding. The patterned features of conductive nanocomposites are conveniently accessed using shadow masks or selective laser ablation. The practical suitability is demonstrated by the successful implementations of a stretchable sensing patch and a flexible light-emitting diode display.
Collapse
Affiliation(s)
- Yong Lin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
| | - Lin Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
| | - Tao Ma
- College of Chemical Engineering and Technology, Engineering Research Center of Seawater Utilization Technology of Ministry of Education, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Likang Ding
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas 77005, United States
| | - Shitai Cao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
| | - Gaohua Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
| | - Xiaohui Ma
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
| | - Qian Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|