1
|
Cheng P, Zou Y, Li Z. Harvesting Water Energy through the Liquid-Solid Triboelectrification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47050-47074. [PMID: 39207453 DOI: 10.1021/acsami.4c09044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The escalating energy and environmental challenges have catalyzed a global shift toward seeking more sustainable, economical, and eco-friendly energy solutions. Water, capturing 35% of the Earth's solar energy, represents a vast reservoir of clean energy. However, current industrial capabilities harness only a fraction of the energy within the hydrological cycle. The past decade has seen rapid advancements in nanoscience and nanomaterials leading to a comprehensive exploration of liquid-solid triboelectrification as a low-carbon, efficient method for water energy harvesting. This review explores two fundamental principle models involved in liquid-solid triboelectrification. On the basis of these models, two distinct types of water energy harvesting devices, including droplet-based nanogenerators and water evaporation-induced nanogenerators, are summarized from their working principles, recent developments, materials, structures, and performance optimization techniques. Additionally, the applications of these nanogenerators in energy harvesting, self-powered sensing, and healthcare are also discussed. Ultimately, the challenges and future prospects of liquid-solid triboelectrification are further explored.
Collapse
Affiliation(s)
- Peng Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Du Y, Zhang H, Zou L, Li X, Lv X, Ye J, Deng K, Tian W, Ji J. Manipulating 2D Membrane Interlayer Channels with Accelerated Mass-Transfer Behavior to Boost Solar Desalination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402105. [PMID: 38727184 DOI: 10.1002/smll.202402105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Indexed: 10/01/2024]
Abstract
The scarcity of fresh water necessitates sustainable and efficient water desalination strategies. Solar-driven steam generation (SSG), which employs solar energy for water evaporation, has emerged as a promising approach. Graphene oxide (GO)-based membranes possess advantages like capillary action and Marangoni effect, but their stacking defects and dead zones of flexible flakes hinders efficient water transportation, thus the evaporation rate lag behind unobstructed-porous 3D evaporators. Therefore, fundamental mass-transfer approach for optimizing SSG evaporators offers new horizons. Herein, a universal multi-force-fields-based method is presented to regularize membrane channels, which can mechanically eliminate inherent interlayer stackings and defects. Both characterization and simulation demonstrate the effectiveness of this approach across different scales and explain the intrinsic mechanism of mass-transfer enhancement. When combined with a structurally optimized substrate, the 4Laponite@GO-1 achieves evaporation rate of 2.782 kg m-2 h-1 with 94.48% evaporation efficiency, which is comparable with most 3D evaporators. Moreover, the optimized membrane exhibits excellent cycling stability (10 days) and tolerance to extreme conditions (pH 1-14, salinity 1%-15%), verifies the robust structural stability of regularized channels. This optimization strategy provides simple but efficient way to enhance the SSG performance of GO-based membranes, facilitating their extensive application in sustainable water purification technologies.
Collapse
Affiliation(s)
- Yuping Du
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - He Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Lie Zou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Xiaoke Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Xingbin Lv
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, P. R. China
| | - Jiahui Ye
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kuan Deng
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wen Tian
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Junyi Ji
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
3
|
Mo W, Hu Q, Guan J, Jiang Y, Tian W, Li H, Leroux F, Feng Y. Enhanced dispersion of prussian blue via intercalation into layered double hydroxides for efficient solar seawater evaporation. Dalton Trans 2024; 53:10285-10292. [PMID: 38831740 DOI: 10.1039/d4dt01300j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Prussian blue (PB) is favored for its photothermal absorption capability in solar vapor generation applications. However, the photothermal conversion efficiency of current PB-based devices is limited by the material's poor dispersion. Herein, we report a method of incorporating PB in the interlayers of layered double hydroxides (LDHs) to prevent its aggregation. The dispersion is further enhanced and stabilized by the addition of sodium dodecyl sulfate (SDS). The thermal and water stability of PB is improved due to the rigid structure of LDHs and interactions between layers and anions. Elemental analysis confirms that with the increase of molar ratio of Mg/Al and the introduction of SDS, concentrations of PB are decreased accordingly. As a result, the rate of solar vapor generation is increased by 35.9% for powders containing 50 mg of equivalent PB. Of note, converting this material into a three-dimensional structure of high rebound foam further enhances solar water evaporation rate, from 0.79 kg m-2 h-1 to 0.98 kg m-2 h-1, with only 20 mg of equivalent PB, increasing the corresponding photothermal conversion efficiency from 53.8% to 66.3%.
Collapse
Affiliation(s)
- Weixin Mo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China.
| | - Qianqian Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China.
| | - Jun Guan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China.
| | - Yu Jiang
- Beijing Municipal Construction Group Co. Ltd, A40 Xingshikou Road, Haidian District, Beijing, 100195, China
| | - Weiliang Tian
- College of Chemistry and Chemical Engineering, Tarim University, Alar, 843300, PR China
| | - Huiyu Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China.
| | - Fabrice Leroux
- Chemical Institute of Clermont-Ferrand (ICCF), University Clermont Auvergne, UMR-CNRS No 6296, F_63171 Aubière, France
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China.
- College of Chemistry and Chemical Engineering, Tarim University, Alar, 843300, PR China
| |
Collapse
|
4
|
Wang L, Zhang W, Deng Y. Advances and Challenges for Hydrovoltaic Intelligence. ACS NANO 2023. [PMID: 37506225 DOI: 10.1021/acsnano.3c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
In recent years, excessive exploitation and rapid population growth have posed numerous challenges. The climate crisis is deepening because of the unabated use of fossil fuels and the ascendance of greenhouse gas levels, so there is still an urgent need to seek different clean energy sources and electricity generating methods with the purpose of adjusting energy structures and solving environmental problems. In the ubiquitous hydrologic cycle, at least 60 petawatts (1015 W) energy can be supplied, but little of it has yet been utilized. Nowadays, hydrovoltaic intelligence has emerged and exhibited an ecofriendly concept of electricity generation compared with traditional methods with the rise of nanoscience and nanomaterials. Hence, it provides the prospect of upgrading the mode of water energy use, constructing a renewable energy industry, and alleviating environmental issues. In this review, starting by introducing different types of hydrovoltaic effect mechanisms─energy harvesting based on drawing potential of liquids; energy harvesting based on water evaporation, and energy harvesting based on moisture adsorption─we summarize the fabrication processes, material classifications, intelligent applications, and representative advances in detail. Moreover, the future development trends of hydrovoltaic intelligence and the challenges for improvement in electrical output are further discussed.
Collapse
Affiliation(s)
- Luomin Wang
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Weifeng Zhang
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| |
Collapse
|
5
|
Sun MH, Li C, Liu J, Min P, Yu ZZ, Li X. Three-Dimensional Mirror-Assisted and Concave Pyramid-Shaped Solar-Thermal Steam Generator for Highly Efficient and Stable Water Evaporation and Brine Desalination. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37248165 DOI: 10.1021/acsami.3c02087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although significant advances have been achieved in developing solar-driven water evaporators for seawater desalination, there is still room for simultaneously enhancing water evaporation efficiency, salt resistance, and utilization of solar energy. Herein, for the first time, we demonstrate a highly efficient three-dimensional (3D) mirror-assisted and concave pyramid-shaped solar-thermal water evaporation system for high-yield and long-term desalination of seawater and brine water, which consists of a 3D concave pyramid-shaped solar-thermal architecture on the basis of polypyrrole-coated nonwoven fabrics (PCNFs), a 3D mirror array, a self-floating polystyrene foam layer, and a tail-like PCNF for upward transport of water. The 3D concave pyramid-shaped solar-thermal architecture enables multiple solar light reflections to absorb more solar energy, while the 3D mirror-assisted solar light enhancement design can activate the solar-thermal energy conversion of the back side of the concave pyramid-shaped PCNF architecture to improve the solar-thermal energy conversion efficiency. Crucially, selective accumulation of the precipitated salts on the back side of the concave pyramid-shaped architecture is realized, ensuring a favorable salt-resistant feature. The 3D mirror-assisted and concave pyramid-shaped solar-driven water evaporation system achieves a record high water evaporation rate of 4.75 kg m-2 h-1 under 1-sun irradiation only and exhibits long-term desalination stability even when evaporating high-salinity brine waters, demonstrating its great applicability and reliability for high-yield solar-driven desalination of seawater and high-salinity brine water.
Collapse
Affiliation(s)
- Ming-Hong Sun
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changjun Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ji Liu
- School of Chemistry, CRANN and AMBER, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Peng Min
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaofeng Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Polypyrrole solar evaporator designed based on the interface evaporation principle and its application in sewage treatment. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Zhang L, Liu Y, Wang T, Liu Z, Li W, Qiao ZA. Multi-Dimensional Molecular Self-Assembly Strategy for the Construction of Two-Dimensional Mesoporous Polydiaminopyridine and Carbon Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205693. [PMID: 36408773 DOI: 10.1002/smll.202205693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) mesoporous polymers, combining the advantages of organic polymers, porous materials, and 2D materials, have received great attention in adsorption, catalysis, and energy storage. However, the synthesis of 2D mesoporous polymers is not only challenged by the complex 2D structure construction, but also by the low yield and difficulty in controlling the dynamics of the assembly during the generation of mesopores. Herein, a facile multi-dimensional molecular self-assembly strategy is reported for the preparation of 2D mesoporous polydiaminopyridines (MPDAPs), which features tunable pore sizes (17-35 nm) and abundant N content up to 18.0 at%. Benefitting from the abundant N sites, 2D nanostructure, and uniform-large mesopores, the 2D MPDAPs exhibit excellent catalytic performance for the Knoevenagel condensation reaction. After calcination under N2 atmosphere, the obtained 2D N-doped mesoporous carbon (NMCs) with large and uniform pore sizes, high surface areas, abundant N content (up to 23.1%), and a high ratio of basic N species (57.0% pyridinic N and 35.9% pyrrolic N) can show an excellent CO2 uptake density (11.7 µmol m-2 at 273 K), higher than previously reported porous materials.
Collapse
Affiliation(s)
- Liangliang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Yumeng Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Tao Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhilin Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Wei Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|