1
|
Phan A, MacKay JA. Steric stabilization of bioactive nanoparticles using elastin-like polypeptides. Adv Drug Deliv Rev 2024; 206:115189. [PMID: 38281625 DOI: 10.1016/j.addr.2024.115189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Elastin-like polypeptides (ELP) are versatile, thermo-responsive polymers that can be conjugated to virtually any therapeutic cargo. Derived from short amino-acid sequences and abundant in humans, certain ELPs display low immunogenicity. Substrates for endogenous proteases, ELPs are biodegradable and thus, are candidate biomaterials. Peptides and proteins can be directly coupled with ELPs through genetic engineering, while other polymers and small molecules can be appended through covalent bioconjugation or non-covalent complexation. ELPs that phase separate at physiological temperatures can form the core of nano assemblies; however, ELPs that remain soluble can sterically stabilize the corona of a variety of nanoparticles. Nanoparticles with ELPs at their corona promote colloids with favorable pharmacokinetic (PK) properties that enables therapeutic efficacy with intermittent administration. This review highlights a comprehensive spectrum of ELP fusions shown to stabilize the solubility, and sometimes bioactivity, of their cargo - with a focus on biophysical properties that underlie their therapeutic effects.
Collapse
Affiliation(s)
- Alvin Phan
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
2
|
Grazon C, Garanger E, Lalanne P, Ibarboure E, Galagan JE, Grinstaff MW, Lecommandoux S. Transcription-Factor-Induced Aggregation of Biomimetic Oligonucleotide- b-Protein Micelles. Biomacromolecules 2023; 24:5027-5034. [PMID: 37877162 DOI: 10.1021/acs.biomac.3c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Polymeric micelles and especially those based on natural diblocks are of particular interest due to their advantageous properties in terms of molecular recognition, biocompatibility, and biodegradability. We herein report a facile and straightforward synthesis of thermoresponsive elastin-like polypeptide (ELP) and oligonucleotide (ON) diblock bioconjugates, ON-b-ELP, through copper-catalyzed azide-alkyne cycloaddition. The resulting thermosensitive diblock copolymer self-assembles above its critical micelle temperature (CMT ∼30 °C) to form colloidally stable micelles of ∼50 nm diameter. The ON-b-ELP micelles hybridize with an ON complementary strand and maintain their size and stability. Next, we describe the capacity of these micelles to bind proteins, creating more complex structures using the classic biotin-streptavidin pairing and the specific recognition between a transcription factor protein and the ON strand. In both instances, the micelles are intact, form larger structures, and retain their sensitivity to temperature.
Collapse
Affiliation(s)
- Chloé Grazon
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | - Pierre Lalanne
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | - James E Galagan
- Department of Microbiology, Boston University, Boston, Massachusetts 02118, United States
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | | |
Collapse
|
3
|
Guo Y, Liu S, Jing D, Liu N, Luo X. The construction of elastin-like polypeptides and their applications in drug delivery system and tissue repair. J Nanobiotechnology 2023; 21:418. [PMID: 37951928 PMCID: PMC10638729 DOI: 10.1186/s12951-023-02184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are thermally responsive biopolymers derived from natural elastin. These peptides have a low critical solution temperature phase behavior and can be used to prepare stimuli-responsive biomaterials. Through genetic engineering, biomaterials prepared from ELPs can have unique and customizable properties. By adjusting the amino acid sequence and length of ELPs, nanostructures, such as micelles and nanofibers, can be formed. Correspondingly, ELPs have been used for improving the stability and prolonging drug-release time. Furthermore, ELPs have widespread use in tissue repair due to their biocompatibility and biodegradability. Here, this review summarizes the basic property composition of ELPs and the methods for modulating their phase transition properties, discusses the application of drug delivery system and tissue repair and clarifies the current challenges and future directions of ELPs in applications.
Collapse
Affiliation(s)
- Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Shiwei Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Dan Jing
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Nianzu Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
4
|
Ji Y, Liu D, Zhu H, Bao L, Chang R, Gao X, Yin J. Unstructured Polypeptides as a Versatile Drug Delivery Technology. Acta Biomater 2023; 164:74-93. [PMID: 37075961 DOI: 10.1016/j.actbio.2023.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Although polyethylene glycol (PEG), or "PEGylation" has become a widely applied approach for improving the efficiency of drug delivery, the immunogenicity and non-biodegradability of this synthetic polymer have prompted an evident need for alternatives. To overcome these caveats and to mimic PEG -or other natural or synthetic polymers- for the purpose of drug half-life extension, unstructured polypeptides are designed. Due to their tunable length, biodegradability, low immunogenicity and easy production, unstructured polypeptides have the potential to replace PEG as the preferred technology for therapeutic protein/peptide delivery. This review provides an overview of the evolution of unstructured polypeptides, starting from natural polypeptides to engineered polypeptides and discusses their characteristics. Then, it is described that unstructured polypeptides have been successfully applied to numerous drugs, including peptides, proteins, antibody fragments, and nanocarriers, for half-life extension. Innovative applications of unstructured peptides as releasable masks, multimolecular adaptors and intracellular delivery carriers are also discussed. Finally, challenges and future perspectives of this promising field are briefly presented. STATEMENT OF SIGNIFICANCE: : Polypeptide fusion technology simulating PEGylation has become an important topic for the development of long-circulating peptide or protein drugs without reduced activity, complex processes, and kidney injury caused by PEG modification. Here we provide a detailed and in-depth review of the recent advances in unstructured polypeptides. In addition to the application of enhanced pharmacokinetic performance, emphasis is placed on polypeptides as scaffolders for the delivery of multiple drugs, and on the preparation of reasonably designed polypeptides to manipulate the performance of proteins and peptides. This review will provide insight into future application of polypeptides in peptide or protein drug development and the design of novel functional polypeptides.
Collapse
Affiliation(s)
- Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|