1
|
Li C, Lee DY. A Hydraulic Haptic Actuator for Simulation of Cardiac Catheters. IEEE TRANSACTIONS ON HAPTICS 2024; 17:461-470. [PMID: 38345951 DOI: 10.1109/toh.2024.3364689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/15/2024]
Abstract
This article presents a haptic actuator made of silicone rubber to provide both passive and active haptic forces for catheter simulations. The haptic actuator has a torus outer shape with an ellipse-shaped inside chamber which is actuated by hydraulic pressure. Expansion of the chamber by providing positive pressure can squeeze the inside passage to resist the catheter traveling through. Further expansion can hold and push back the catheter in the axial direction to render active haptic forces. The size of the catheter passage is increased by providing negative pressure to the chamber, allowing various diameters of the actual medical catheters to be used and exchanged during the simulation. The diameter of the catheter passage can be enlarged up to 1.6 times to allow 5 to 7 Fr (1 Fr = 1/3 mm) medical catheters to pass through. Experiment results show that the proposed haptic actuator can render 0 to 2.0 N passive feedback force, and a maximum of 2.0 N active feedback force, sufficient for the cardiac catheter simulation. The haptic actuator can render the commanded force profile with 0.10 N RMS (root-mean-squares) and 10.51% L2-norm relative errors.
Collapse
|
2
|
Tan MWM, Wang H, Gao D, Huang P, Lee PS. Towards high performance and durable soft tactile actuators. Chem Soc Rev 2024; 53:3485-3535. [PMID: 38411597 DOI: 10.1039/d3cs01017a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/28/2024]
Abstract
Soft actuators are gaining significant attention due to their ability to provide realistic tactile sensations in various applications. However, their soft nature makes them vulnerable to damage from external factors, limiting actuation stability and device lifespan. The susceptibility to damage becomes higher with these actuators often in direct contact with their surroundings to generate tactile feedback. Upon onset of damage, the stability or repeatability of the device will be undermined. Eventually, when complete failure occurs, these actuators are disposed of, accumulating waste and driving the consumption of natural resources. This emphasizes the need to enhance the durability of soft tactile actuators for continued operation. This review presents the principles of tactile feedback of actuators, followed by a discussion of the mechanisms, advancements, and challenges faced by soft tactile actuators to realize high actuation performance, categorized by their driving stimuli. Diverse approaches to achieve durability are evaluated, including self-healing, damage resistance, self-cleaning, and temperature stability for soft actuators. In these sections, current challenges and potential material designs are identified, paving the way for developing durable soft tactile actuators.
Collapse
Affiliation(s)
- Matthew Wei Ming Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Hui Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Peiwen Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| |
Collapse
|
3
|
Yilmaz RB, Chaabane Y, Mansard V. Development of a Soft Actuator from Fast Swelling Macroporous PNIPAM Gels for Smart Braille Device Applications in Haptic Technology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7340-7352. [PMID: 36706224 DOI: 10.1021/acsami.2c17835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/18/2023]
Abstract
The development of a cost-efficient braille device is a crucial challenge in haptic technology to improve the integration of visually impaired people. Exclusion of any group threatens the proper functioning of society. Commercially available braille devices still utilize piezoelectric actuators, which are expensive and bulky. The challenge of a more adapted braille device lies in the integration of a high number of actuators─on a millimeter scale─in order to independently move a matrix of pins acting as tactile cues. Unfortunately, no actuation strategy has been adapted to tackle this challenge. In this study, we develop a soft actuator based on a thermosensitive poly(N-isopropylacrylamide) (PNIPAM) gel. We introduce macroporosity to the gel (pores of 10 to 100 μm). It overcomes the diffusion─which is the limiting kinetic factor─and accelerates the gel response time from hours for the bulk gel to seconds for the macroporous gel. We study the properties of porous gels with various porosities. We also compare a mechanically reinforced nanocomposite gel (made of PNIPAM and Laponite clay) to a "classic" gel. As a result, we develop a fast-actuating gel with high cyclic performance. We then develop a single-pin braille setup, where actuation is controlled thanks to a swift temperature control of a macroporous gel cylinder. This new strategy offers a very promising actuation technology. It offers a simple and cost-efficient alternative to the current braille devices.
Collapse
Affiliation(s)
- Refik Baris Yilmaz
- CNRS, LAAS-CNRS, 7, avenue du Colonel Roche, BP 54200 31031 Toulouse Cedex 4, France
| | - Yosr Chaabane
- CNRS, LAAS-CNRS, 7, avenue du Colonel Roche, BP 54200 31031 Toulouse Cedex 4, France
| | - Vincent Mansard
- CNRS, LAAS-CNRS, 7, avenue du Colonel Roche, BP 54200 31031 Toulouse Cedex 4, France
| |
Collapse
|